Cargando…

Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics

Oncoviruses cause tremendous global cancer burden. For several DNA tumor viruses, human genome integration is consistently associated with cancer development. However, genomic features associated with tumor viral integration are poorly understood. We sought to define genomic determinants for 1897 lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Doolittle-Hall, Janet M., Cunningham Glasspoole, Danielle L., Seaman, William T., Webster-Cyriaque, Jennifer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695887/
https://www.ncbi.nlm.nih.gov/pubmed/26569308
http://dx.doi.org/10.3390/cancers7040887
Descripción
Sumario:Oncoviruses cause tremendous global cancer burden. For several DNA tumor viruses, human genome integration is consistently associated with cancer development. However, genomic features associated with tumor viral integration are poorly understood. We sought to define genomic determinants for 1897 loci prone to hosting human papillomavirus (HPV), hepatitis B virus (HBV) or Merkel cell polyomavirus (MCPyV). These were compared to HIV, whose enzyme-mediated integration is well understood. A comprehensive catalog of integration sites was constructed from the literature and experimentally-determined HPV integration sites. Features were scored in eight categories (genes, expression, open chromatin, histone modifications, methylation, protein binding, chromatin segmentation and repeats) and compared to random loci. Random forest models determined loci classification and feature selection. HPV and HBV integrants were not fragile site associated. MCPyV preferred integration near sensory perception genes. Unique signatures of integration-associated predictive genomic features were detected. Importantly, repeats, actively-transcribed regions and histone modifications were common tumor viral integration signatures.