Cargando…

Inferring Indel Parameters using a Simulation-based Approach

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use paramet...

Descripción completa

Detalles Bibliográficos
Autores principales: Levy Karin, Eli, Rabin, Avigayel, Ashkenazy, Haim, Shkedy, Dafna, Avram, Oren, Cartwright, Reed A., Pupko, Tal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700945/
https://www.ncbi.nlm.nih.gov/pubmed/26537226
http://dx.doi.org/10.1093/gbe/evv212
Descripción
Sumario:In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and the Mahalanobis distance to estimate how well a proposed set of parameters fits input data. Using simulations, we demonstrate that our methodology can accurately infer the indel parameters for a large variety of plausible settings. Moreover, using our methodology, we show that indel parameters substantially vary between three genomic data sets: Mammals, bacteria, and retroviruses. Finally, we demonstrate how our methodology can be used to simulate MSAs based on indel parameters inferred from real data sets.