Cargando…
Parameterizing Spatial Models of Infectious Disease Transmission that Incorporate Infection Time Uncertainty Using Sampling-Based Likelihood Approximations
A class of discrete-time models of infectious disease spread, referred to as individual-level models (ILMs), are typically fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. These models quantify probabilistic outcomes regarding the risk of infection of susceptible individuals due to va...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701410/ https://www.ncbi.nlm.nih.gov/pubmed/26731666 http://dx.doi.org/10.1371/journal.pone.0146253 |