Cargando…
Parameterizing Spatial Models of Infectious Disease Transmission that Incorporate Infection Time Uncertainty Using Sampling-Based Likelihood Approximations
A class of discrete-time models of infectious disease spread, referred to as individual-level models (ILMs), are typically fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. These models quantify probabilistic outcomes regarding the risk of infection of susceptible individuals due to va...
Autores principales: | Malik, Rajat, Deardon, Rob, Kwong, Grace P. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701410/ https://www.ncbi.nlm.nih.gov/pubmed/26731666 http://dx.doi.org/10.1371/journal.pone.0146253 |
Ejemplares similares
-
Spatial approximations of network-based individual level infectious disease models
por: Bifolchi, Nadia, et al.
Publicado: (2013) -
Approximate Likelihood
por: CRANMER, Kyle Stuart
Publicado: (2015) -
Maximum-likelihood estimation of parameterized wavefronts from multifocal data
por: Sakamoto, Julia A., et al.
Publicado: (2012) -
Approximate restricted maximum likelihood and approximate prediction error variance of the Mendelian sampling effect
por: Boichard, D, et al.
Publicado: (1992) -
Approximate maximum likelihood estimation for stochastic chemical kinetics
por: Andreychenko, Aleksandr, et al.
Publicado: (2012)