Cargando…

Exon-centric regulation of ATM expression is population-dependent and amenable to antisense modification by pseudoexon targeting

ATM is an important cancer susceptibility gene that encodes a critical apical kinase of the DNA damage response (DDR) pathway. We show that a key nonsense-mediated RNA decay switch exon (NSE) in ATM is repressed by U2AF, PUF60 and hnRNPA1. The NSE activation was haplotype-specific and was most promo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kralovicova, Jana, Knut, Marcin, Cross, Nicholas C. P., Vorechovsky, Igor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702124/
https://www.ncbi.nlm.nih.gov/pubmed/26732650
http://dx.doi.org/10.1038/srep18741
Descripción
Sumario:ATM is an important cancer susceptibility gene that encodes a critical apical kinase of the DNA damage response (DDR) pathway. We show that a key nonsense-mediated RNA decay switch exon (NSE) in ATM is repressed by U2AF, PUF60 and hnRNPA1. The NSE activation was haplotype-specific and was most promoted by cytosine at rs609621 in the NSE 3′ splice-site (3′ss), which is predominant in high cancer risk populations. NSE levels were deregulated in leukemias and were influenced by the identity of U2AF35 residue 34. We also identify splice-switching oligonucleotides (SSOs) that exploit competition of adjacent pseudoexons to modulate NSE levels. The U2AF-regulated exon usage in the ATM signalling pathway was centred on the MRN/ATM-CHEK2-CDC25-cdc2/cyclin-B axis and preferentially involved transcripts implicated in cancer-associated gene fusions and chromosomal translocations. These results reveal important links between 3′ss control and ATM-dependent responses to double-strand DNA breaks, demonstrate functional plasticity of intronic variants and illustrate versatility of intronic SSOs that target pseudo-3′ss to modify gene expression.