Cargando…
Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin
Naringinase induced from the fermented broth of marine-derived fungus Aspergillus niger was immobilized into grafted gel beads, to obtain biocatalytically active beads. The support for enzyme immobilization was characterized by ART-FTIR and TGA techniques. TGA revealed a significant improvement in t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703588/ https://www.ncbi.nlm.nih.gov/pubmed/28330084 http://dx.doi.org/10.1007/s13205-015-0338-x |
Sumario: | Naringinase induced from the fermented broth of marine-derived fungus Aspergillus niger was immobilized into grafted gel beads, to obtain biocatalytically active beads. The support for enzyme immobilization was characterized by ART-FTIR and TGA techniques. TGA revealed a significant improvement in the grafted gel’s thermal stability from 200 to 300 °C. Optimization of the enzyme loading capacity increased gradually by 28-fold from 32 U/g gel to 899 U/g gel beads, retaining 99 % of the enzyme immobilization efficiency and 88 % of the immobilization yield. The immobilization process highly improved the enzyme’s thermal stability from 50 to 70 °C, which is favored in food industries, and reusability test retained 100 % of the immobilized enzyme activity after 20 cycles. These results are very useful on the marketing and industrial levels. |
---|