Cargando…
Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis
Phagocytosis plays a key role in survival and pathogenicity of Entamoeba histolytica. We have recently demonstrated that an atypical kinase EhAK1 is involved in phagocytosis in this parasite. It is recruited to the phagocytic cups through interaction with EhCaBP1. EhAK1 manipulates actin dynamics by...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703981/ https://www.ncbi.nlm.nih.gov/pubmed/26739245 http://dx.doi.org/10.1038/srep16969 |
_version_ | 1782408819378225152 |
---|---|
author | Mansuri, M Shahid Babuta, Mrigya Ali, Mohammad Sabir Bharadwaj, Ravi jhingan, Gagan Deep Gourinath, Samudrala Bhattacharya, Sudha Bhattacharya, Alok |
author_facet | Mansuri, M Shahid Babuta, Mrigya Ali, Mohammad Sabir Bharadwaj, Ravi jhingan, Gagan Deep Gourinath, Samudrala Bhattacharya, Sudha Bhattacharya, Alok |
author_sort | Mansuri, M Shahid |
collection | PubMed |
description | Phagocytosis plays a key role in survival and pathogenicity of Entamoeba histolytica. We have recently demonstrated that an atypical kinase EhAK1 is involved in phagocytosis in this parasite. It is recruited to the phagocytic cups through interaction with EhCaBP1. EhAK1 manipulates actin dynamics by multiple mechanisms including phosphorylation of G-actin. Biochemical analysis showed that EhAK1 is a serine/threonine kinase with broad ion specificity and undergoes multiple trans-autophosphorylation. Three autophosphorylation sites were identified by mass spectrometry. Out of these Thr279 appears to be involved in both autophosphorylation as well as substrate phosphorylation. Over expression of the mutant Thr279A inhibited erythrophagocytosis showing dominant negative phenotype. Multiple alignments of different kinases including alpha kinases displayed conserved binding sites that are thought to be important for function of the protein. Mutation studies demonstrated the importance of some of these binding sites in kinase activity. Binding studies with fluorescent-ATP analogs supported our prediction regarding ATP binding site based on sequence alignment. In conclusion, EhAK1 has multiple regulatory features and enrichment of EhAK1 at the site of phagocytosis stimulates trans-autophosphorylation reaction that increases kinase activity resulting in enhanced actin dynamics and phagocytosis. Some of the properties of EhAK1 are similar to that seen in alpha kinases. |
format | Online Article Text |
id | pubmed-4703981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47039812016-01-19 Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis Mansuri, M Shahid Babuta, Mrigya Ali, Mohammad Sabir Bharadwaj, Ravi jhingan, Gagan Deep Gourinath, Samudrala Bhattacharya, Sudha Bhattacharya, Alok Sci Rep Article Phagocytosis plays a key role in survival and pathogenicity of Entamoeba histolytica. We have recently demonstrated that an atypical kinase EhAK1 is involved in phagocytosis in this parasite. It is recruited to the phagocytic cups through interaction with EhCaBP1. EhAK1 manipulates actin dynamics by multiple mechanisms including phosphorylation of G-actin. Biochemical analysis showed that EhAK1 is a serine/threonine kinase with broad ion specificity and undergoes multiple trans-autophosphorylation. Three autophosphorylation sites were identified by mass spectrometry. Out of these Thr279 appears to be involved in both autophosphorylation as well as substrate phosphorylation. Over expression of the mutant Thr279A inhibited erythrophagocytosis showing dominant negative phenotype. Multiple alignments of different kinases including alpha kinases displayed conserved binding sites that are thought to be important for function of the protein. Mutation studies demonstrated the importance of some of these binding sites in kinase activity. Binding studies with fluorescent-ATP analogs supported our prediction regarding ATP binding site based on sequence alignment. In conclusion, EhAK1 has multiple regulatory features and enrichment of EhAK1 at the site of phagocytosis stimulates trans-autophosphorylation reaction that increases kinase activity resulting in enhanced actin dynamics and phagocytosis. Some of the properties of EhAK1 are similar to that seen in alpha kinases. Nature Publishing Group 2016-01-07 /pmc/articles/PMC4703981/ /pubmed/26739245 http://dx.doi.org/10.1038/srep16969 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Mansuri, M Shahid Babuta, Mrigya Ali, Mohammad Sabir Bharadwaj, Ravi jhingan, Gagan Deep Gourinath, Samudrala Bhattacharya, Sudha Bhattacharya, Alok Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis |
title | Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis |
title_full | Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis |
title_fullStr | Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis |
title_full_unstemmed | Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis |
title_short | Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis |
title_sort | autophosphorylation at thr279 of entamoeba histolytica atypical kinase ehak1 is required for activity and regulation of erythrophagocytosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703981/ https://www.ncbi.nlm.nih.gov/pubmed/26739245 http://dx.doi.org/10.1038/srep16969 |
work_keys_str_mv | AT mansurimshahid autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis AT babutamrigya autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis AT alimohammadsabir autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis AT bharadwajravi autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis AT jhingangagandeep autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis AT gourinathsamudrala autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis AT bhattacharyasudha autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis AT bhattacharyaalok autophosphorylationatthr279ofentamoebahistolyticaatypicalkinaseehak1isrequiredforactivityandregulationoferythrophagocytosis |