Cargando…

A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related devi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jaemin, Son, Donghee, Lee, Mincheol, Song, Changyeong, Song, Jun-Kyul, Koo, Ja Hoon, Lee, Dong Jun, Shim, Hyung Joon, Kim, Ji Hoon, Lee, Minbaek, Hyeon, Taeghwan, Kim, Dae-Hyeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705037/
https://www.ncbi.nlm.nih.gov/pubmed/26763827
http://dx.doi.org/10.1126/sciadv.1501101
_version_ 1782408954917158912
author Kim, Jaemin
Son, Donghee
Lee, Mincheol
Song, Changyeong
Song, Jun-Kyul
Koo, Ja Hoon
Lee, Dong Jun
Shim, Hyung Joon
Kim, Ji Hoon
Lee, Minbaek
Hyeon, Taeghwan
Kim, Dae-Hyeong
author_facet Kim, Jaemin
Son, Donghee
Lee, Mincheol
Song, Changyeong
Song, Jun-Kyul
Koo, Ja Hoon
Lee, Dong Jun
Shim, Hyung Joon
Kim, Ji Hoon
Lee, Minbaek
Hyeon, Taeghwan
Kim, Dae-Hyeong
author_sort Kim, Jaemin
collection PubMed
description Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.
format Online
Article
Text
id pubmed-4705037
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-47050372016-01-13 A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement Kim, Jaemin Son, Donghee Lee, Mincheol Song, Changyeong Song, Jun-Kyul Koo, Ja Hoon Lee, Dong Jun Shim, Hyung Joon Kim, Ji Hoon Lee, Minbaek Hyeon, Taeghwan Kim, Dae-Hyeong Sci Adv Research Articles Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. American Association for the Advancement of Science 2016-01-01 /pmc/articles/PMC4705037/ /pubmed/26763827 http://dx.doi.org/10.1126/sciadv.1501101 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Kim, Jaemin
Son, Donghee
Lee, Mincheol
Song, Changyeong
Song, Jun-Kyul
Koo, Ja Hoon
Lee, Dong Jun
Shim, Hyung Joon
Kim, Ji Hoon
Lee, Minbaek
Hyeon, Taeghwan
Kim, Dae-Hyeong
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
title A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
title_full A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
title_fullStr A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
title_full_unstemmed A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
title_short A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
title_sort wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705037/
https://www.ncbi.nlm.nih.gov/pubmed/26763827
http://dx.doi.org/10.1126/sciadv.1501101
work_keys_str_mv AT kimjaemin awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT sondonghee awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT leemincheol awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT songchangyeong awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT songjunkyul awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT koojahoon awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT leedongjun awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT shimhyungjoon awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT kimjihoon awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT leeminbaek awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT hyeontaeghwan awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT kimdaehyeong awearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT kimjaemin wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT sondonghee wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT leemincheol wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT songchangyeong wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT songjunkyul wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT koojahoon wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT leedongjun wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT shimhyungjoon wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT kimjihoon wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT leeminbaek wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT hyeontaeghwan wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement
AT kimdaehyeong wearablemultiplexedsiliconnonvolatilememoryarrayusingnanocrystalchargeconfinement