Cargando…
A general strategy to inhibiting viral −1 frameshifting based on upstream attenuation duplex formation
Viral −1 programmed ribosomal frameshifting (PRF) as a potential antiviral target has attracted interest because many human viral pathogens, including human immunodeficiency virus (HIV) and coronaviruses, rely on −1 PRF for optimal propagation. Efficient eukaryotic −1 PRF requires an optimally place...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705660/ https://www.ncbi.nlm.nih.gov/pubmed/26612863 http://dx.doi.org/10.1093/nar/gkv1307 |
Sumario: | Viral −1 programmed ribosomal frameshifting (PRF) as a potential antiviral target has attracted interest because many human viral pathogens, including human immunodeficiency virus (HIV) and coronaviruses, rely on −1 PRF for optimal propagation. Efficient eukaryotic −1 PRF requires an optimally placed stimulator structure downstream of the frameshifting site and different strategies targeting viral −1 PRF stimulators have been developed. However, accessing particular −1 PRF stimulator information represents a bottle-neck in combating the emerging epidemic viral pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV). Recently, an RNA hairpin upstream of frameshifting site was shown to act as a cis-element to attenuate −1 PRF with mechanism unknown. Here, we show that an upstream duplex formed in-trans, by annealing an antisense to its complementary mRNA sequence upstream of frameshifting site, can replace an upstream hairpin to attenuate −1 PRF efficiently. This finding indicates that the formation of a proximal upstream duplex is the main determining factor responsible for −1 PRF attenuation and provides mechanistic insight. Additionally, the antisense-mediated upstream duplex approach downregulates −1 PRF stimulated by distinct −1 PRF stimulators, including those of MERS-CoV, suggesting its general application potential as a robust means to evaluating viral −1 PRF inhibition as soon as the sequence information of an emerging human coronavirus is available. |
---|