Cargando…
DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway
DNA double-strand breaks (DSBs) with 5′ adducts are frequently formed from many nucleic acid processing enzymes, in particular DNA topoisomerase 2 (TOP2). The key intermediate of TOP2 catalysis is the covalent complex (TOP2cc), consisting of two TOP2 subunits covalently linked to the 5′ ends of the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705695/ https://www.ncbi.nlm.nih.gov/pubmed/26420828 http://dx.doi.org/10.1093/nar/gkv969 |
_version_ | 1782409062012420096 |
---|---|
author | Tammaro, Margaret Liao, Shuren Beeharry, Neil Yan, Hong |
author_facet | Tammaro, Margaret Liao, Shuren Beeharry, Neil Yan, Hong |
author_sort | Tammaro, Margaret |
collection | PubMed |
description | DNA double-strand breaks (DSBs) with 5′ adducts are frequently formed from many nucleic acid processing enzymes, in particular DNA topoisomerase 2 (TOP2). The key intermediate of TOP2 catalysis is the covalent complex (TOP2cc), consisting of two TOP2 subunits covalently linked to the 5′ ends of the nicked DNA. In cells, TOP2ccs can be trapped by cancer drugs such as etoposide and then converted into DNA double-strand breaks (DSBs) that carry adducts at the 5′ end. The repair of such DSBs is critical to the survival of cells, but the underlying mechanism is still not well understood. We found that etoposide-induced DSBs are efficiently resected into 3′ single-stranded DNA in cells and the major nuclease for resection is the DNA2 protein. DNA substrates carrying model 5′ adducts were efficiently resected in Xenopus egg extracts and immunodepletion of Xenopus DNA2 also strongly inhibited resection. These results suggest that DNA2-mediated resection is a major mechanism for the repair of DSBs with 5′ adducts. |
format | Online Article Text |
id | pubmed-4705695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47056952016-01-11 DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway Tammaro, Margaret Liao, Shuren Beeharry, Neil Yan, Hong Nucleic Acids Res Genome Integrity, Repair and Replication DNA double-strand breaks (DSBs) with 5′ adducts are frequently formed from many nucleic acid processing enzymes, in particular DNA topoisomerase 2 (TOP2). The key intermediate of TOP2 catalysis is the covalent complex (TOP2cc), consisting of two TOP2 subunits covalently linked to the 5′ ends of the nicked DNA. In cells, TOP2ccs can be trapped by cancer drugs such as etoposide and then converted into DNA double-strand breaks (DSBs) that carry adducts at the 5′ end. The repair of such DSBs is critical to the survival of cells, but the underlying mechanism is still not well understood. We found that etoposide-induced DSBs are efficiently resected into 3′ single-stranded DNA in cells and the major nuclease for resection is the DNA2 protein. DNA substrates carrying model 5′ adducts were efficiently resected in Xenopus egg extracts and immunodepletion of Xenopus DNA2 also strongly inhibited resection. These results suggest that DNA2-mediated resection is a major mechanism for the repair of DSBs with 5′ adducts. Oxford University Press 2016-01-08 2015-09-29 /pmc/articles/PMC4705695/ /pubmed/26420828 http://dx.doi.org/10.1093/nar/gkv969 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Genome Integrity, Repair and Replication Tammaro, Margaret Liao, Shuren Beeharry, Neil Yan, Hong DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway |
title | DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway |
title_full | DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway |
title_fullStr | DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway |
title_full_unstemmed | DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway |
title_short | DNA double-strand breaks with 5′ adducts are efficiently channeled to the DNA2-mediated resection pathway |
title_sort | dna double-strand breaks with 5′ adducts are efficiently channeled to the dna2-mediated resection pathway |
topic | Genome Integrity, Repair and Replication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705695/ https://www.ncbi.nlm.nih.gov/pubmed/26420828 http://dx.doi.org/10.1093/nar/gkv969 |
work_keys_str_mv | AT tammaromargaret dnadoublestrandbreakswith5adductsareefficientlychanneledtothedna2mediatedresectionpathway AT liaoshuren dnadoublestrandbreakswith5adductsareefficientlychanneledtothedna2mediatedresectionpathway AT beeharryneil dnadoublestrandbreakswith5adductsareefficientlychanneledtothedna2mediatedresectionpathway AT yanhong dnadoublestrandbreakswith5adductsareefficientlychanneledtothedna2mediatedresectionpathway |