Cargando…
MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway
OBJECTIVE: Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs). In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs). METHODS: M...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706435/ https://www.ncbi.nlm.nih.gov/pubmed/26745800 http://dx.doi.org/10.1371/journal.pone.0146646 |
_version_ | 1782409168353755136 |
---|---|
author | Wang, Ye Wang, Desheng Guo, Dawen |
author_facet | Wang, Ye Wang, Desheng Guo, Dawen |
author_sort | Wang, Ye |
collection | PubMed |
description | OBJECTIVE: Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs). In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs). METHODS: MiRNA expression dynamics during neurogenic transdifferentiation of ADMSCs were measured. The expression of neuron-specific enolase (NSE), Tuj-1 (Neuron-specific class III beta-tubulin) and glial fibrillary acidic protein (GFAP), as well as electrophysiological properties, were detected after neurogenic transdifferentiation. The targeting of miR-124 over RhoA was verified by dual luciferase assay, qRT-PCR and western blot. The functions of miR-124 and the RhoA/ROCK signaling pathway were studied using gain and loss of function experiments in vitro. RESULTS: MiR-124 is significantly upregulated during neurogenic transdifferentiation of ADMSCs. Knockdown of endogenous miR-124 hampered neurogenic transdifferentiation and the acquired electrophysiological properties. MiR-124 could directly target RHOA mRNA and repress its expression, through which it increased the proportion of transdifferentiated (transdiff.) cells with positive NSE, Tuj-1 and GFAP. RhoA/ROCK1, but not ROCK2 is a downstream signaling pathway of miR-124 in the process of transdifferentiation. CONCLUSION: MiR-124 is an important miRNA modulating neurogenic transdifferentiation of ADMSCs at least partly via the miR-124/RhoA/ROCK1 signaling pathway. These findings provided some fundamental information for future use of ADMSCs as an agent for regenerative medicine and cell therapy for neurological diseases. |
format | Online Article Text |
id | pubmed-4706435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47064352016-01-15 MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway Wang, Ye Wang, Desheng Guo, Dawen PLoS One Research Article OBJECTIVE: Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs). In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs). METHODS: MiRNA expression dynamics during neurogenic transdifferentiation of ADMSCs were measured. The expression of neuron-specific enolase (NSE), Tuj-1 (Neuron-specific class III beta-tubulin) and glial fibrillary acidic protein (GFAP), as well as electrophysiological properties, were detected after neurogenic transdifferentiation. The targeting of miR-124 over RhoA was verified by dual luciferase assay, qRT-PCR and western blot. The functions of miR-124 and the RhoA/ROCK signaling pathway were studied using gain and loss of function experiments in vitro. RESULTS: MiR-124 is significantly upregulated during neurogenic transdifferentiation of ADMSCs. Knockdown of endogenous miR-124 hampered neurogenic transdifferentiation and the acquired electrophysiological properties. MiR-124 could directly target RHOA mRNA and repress its expression, through which it increased the proportion of transdifferentiated (transdiff.) cells with positive NSE, Tuj-1 and GFAP. RhoA/ROCK1, but not ROCK2 is a downstream signaling pathway of miR-124 in the process of transdifferentiation. CONCLUSION: MiR-124 is an important miRNA modulating neurogenic transdifferentiation of ADMSCs at least partly via the miR-124/RhoA/ROCK1 signaling pathway. These findings provided some fundamental information for future use of ADMSCs as an agent for regenerative medicine and cell therapy for neurological diseases. Public Library of Science 2016-01-08 /pmc/articles/PMC4706435/ /pubmed/26745800 http://dx.doi.org/10.1371/journal.pone.0146646 Text en © 2016 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Ye Wang, Desheng Guo, Dawen MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway |
title | MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway |
title_full | MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway |
title_fullStr | MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway |
title_full_unstemmed | MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway |
title_short | MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway |
title_sort | mir-124 promote neurogenic transdifferentiation of adipose derived mesenchymal stromal cells partly through rhoa/rock1, but not rock2 signaling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4706435/ https://www.ncbi.nlm.nih.gov/pubmed/26745800 http://dx.doi.org/10.1371/journal.pone.0146646 |
work_keys_str_mv | AT wangye mir124promoteneurogenictransdifferentiationofadiposederivedmesenchymalstromalcellspartlythroughrhoarock1butnotrock2signalingpathway AT wangdesheng mir124promoteneurogenictransdifferentiationofadiposederivedmesenchymalstromalcellspartlythroughrhoarock1butnotrock2signalingpathway AT guodawen mir124promoteneurogenictransdifferentiationofadiposederivedmesenchymalstromalcellspartlythroughrhoarock1butnotrock2signalingpathway |