Cargando…

Cardiotrophin-1 promotes cardiomyocyte differentiation from mouse induced pluripotent stem cells via JAK2/STAT3/Pim-1 signaling pathway

BACKGROUND: The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tong, Zhang, Ran, Guo, Tao, Ma, Sai, Han, Dong, Li, Xiu-Juan, Jin, Yan, Fan, Miao-Miao, Wang, Ya-Bin, Chen, Yun-Dai, Cao, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712363/
https://www.ncbi.nlm.nih.gov/pubmed/26788034
http://dx.doi.org/10.11909/j.issn.1671-5411.2015.06.002
Descripción
Sumario:BACKGROUND: The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. METHODS: The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of α-myosin heavy chain (α-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT-1 group. RESULTS: Transmission electron microscopic analysis revealed that cells treated with CT-1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. CONCLUSIONS: These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1signaling pathway.