Cargando…
Denoising DNA deep sequencing data—high-throughput sequencing errors and their correction
Characterizing the errors generated by common high-throughput sequencing platforms and telling true genetic variation from technical artefacts are two interdependent steps, essential to many analyses such as single nucleotide variant calling, haplotype inference, sequence assembly and evolutionary s...
Autores principales: | Laehnemann, David, Borkhardt, Arndt, McHardy, Alice Carolyn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4719071/ https://www.ncbi.nlm.nih.gov/pubmed/26026159 http://dx.doi.org/10.1093/bib/bbv029 |
Ejemplares similares
-
SAMQA: error classification and validation of high-throughput sequenced read data
por: Robinson, Thomas, et al.
Publicado: (2011) -
Accurate and scalable variant calling from single cell DNA sequencing data with ProSolo
por: Lähnemann, David, et al.
Publicado: (2021) -
Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches
por: Nearing, Jacob T., et al.
Publicado: (2018) -
The PARA-suite: PAR-CLIP specific sequence read simulation and processing
por: Kloetgen, Andreas, et al.
Publicado: (2016) -
Quake: quality-aware detection and correction of sequencing errors
por: Kelley, David R, et al.
Publicado: (2010)