Cargando…

Functional interplay between ganglioside GM1 and cross‐linking galectin‐1 induces axon‐like neuritogenesis via integrin‐based signaling and TRPC5‐dependent Ca(2+) influx

Axon‐like neuritogenesis in neuroblastoma (NG108‐15) cells and primary cerebellar granular neurons is furthered by the presence of ganglioside GM1. We describe here that galectin‐1 (Gal‐1), a homobivalent endogenous lectin, is an effector by cross‐linking the ganglioside and its associated glycoprot...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Gusheng, Lu, Zi‐Hua, André, Sabine, Gabius, Hans‐Joachim, Ledeen, Robert W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720552/
https://www.ncbi.nlm.nih.gov/pubmed/26526326
http://dx.doi.org/10.1111/jnc.13418
Descripción
Sumario:Axon‐like neuritogenesis in neuroblastoma (NG108‐15) cells and primary cerebellar granular neurons is furthered by the presence of ganglioside GM1. We describe here that galectin‐1 (Gal‐1), a homobivalent endogenous lectin, is an effector by cross‐linking the ganglioside and its associated glycoprotein α(5)β(1)‐integrin. The thereby triggered signaling cascade involves autophosphorylation of focal adhesion kinase and activation of phospholipase Cγ and phosphoinositide‐3 kinase. This leads to a transient increase in the intracellular Ca(2+) concentration by opening of TRPC5 channels, which belong to the signal transduction‐gated cation channels. Controls with GM1‐defective cells (NG‐CR72 and neurons from ganglio‐series KO mice) were retarded in axonal growth, underscoring the relevance of GM1 as functional counterreceptor for Gal‐1. The lectin's presence was detected in the NG108‐15 cells, suggesting an autocrine mechanism of action, and in astrocytes in situ. Gal‐1, as cross‐linking lectin, can thus translate metabolic conversion of ganglioside GD1a to GM1 by neuraminidase action into axon growth. [Image: see text] Galectin‐1 (Gal‐1) was shown an effector of axonogenesis in cerebellar granule neurons (CGNs) and NG108‐15 cells by cross‐linking GM1 ganglioside and its associated glycoprotein α(5)β(1)‐integrin. The resulting signaling led to a transient increase in intracellular Ca(2+) by opening TRPC5 channels. CGNs deficient in GM1 showed retarded axonogenesis, underscoring the relevance of GM1 as functional counterreceptor for Gal‐1 in this process. This Gal‐1/GM1‐induced signaling was manifest only at the earliest, initiating stage of axon development.