Cargando…

Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases

[Image: see text] Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B...

Descripción completa

Detalles Bibliográficos
Autores principales: Waldner, Birgit J., Fuchs, Julian E., Huber, Roland G., von Grafenstein, Susanne, Schauperl, Michael, Kramer, Christian, Liedl, Klaus R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724848/
https://www.ncbi.nlm.nih.gov/pubmed/26709959
http://dx.doi.org/10.1021/acs.jpcb.5b10637
_version_ 1782411595077386240
author Waldner, Birgit J.
Fuchs, Julian E.
Huber, Roland G.
von Grafenstein, Susanne
Schauperl, Michael
Kramer, Christian
Liedl, Klaus R.
author_facet Waldner, Birgit J.
Fuchs, Julian E.
Huber, Roland G.
von Grafenstein, Susanne
Schauperl, Michael
Kramer, Christian
Liedl, Klaus R.
author_sort Waldner, Birgit J.
collection PubMed
description [Image: see text] Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design.
format Online
Article
Text
id pubmed-4724848
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-47248482016-01-28 Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases Waldner, Birgit J. Fuchs, Julian E. Huber, Roland G. von Grafenstein, Susanne Schauperl, Michael Kramer, Christian Liedl, Klaus R. J Phys Chem B [Image: see text] Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design. American Chemical Society 2015-12-28 2016-01-21 /pmc/articles/PMC4724848/ /pubmed/26709959 http://dx.doi.org/10.1021/acs.jpcb.5b10637 Text en Copyright © 2015 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Waldner, Birgit J.
Fuchs, Julian E.
Huber, Roland G.
von Grafenstein, Susanne
Schauperl, Michael
Kramer, Christian
Liedl, Klaus R.
Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases
title Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases
title_full Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases
title_fullStr Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases
title_full_unstemmed Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases
title_short Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases
title_sort quantitative correlation of conformational binding enthalpy with substrate specificity of serine proteases
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724848/
https://www.ncbi.nlm.nih.gov/pubmed/26709959
http://dx.doi.org/10.1021/acs.jpcb.5b10637
work_keys_str_mv AT waldnerbirgitj quantitativecorrelationofconformationalbindingenthalpywithsubstratespecificityofserineproteases
AT fuchsjuliane quantitativecorrelationofconformationalbindingenthalpywithsubstratespecificityofserineproteases
AT huberrolandg quantitativecorrelationofconformationalbindingenthalpywithsubstratespecificityofserineproteases
AT vongrafensteinsusanne quantitativecorrelationofconformationalbindingenthalpywithsubstratespecificityofserineproteases
AT schauperlmichael quantitativecorrelationofconformationalbindingenthalpywithsubstratespecificityofserineproteases
AT kramerchristian quantitativecorrelationofconformationalbindingenthalpywithsubstratespecificityofserineproteases
AT liedlklausr quantitativecorrelationofconformationalbindingenthalpywithsubstratespecificityofserineproteases