Cargando…

Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries

Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Longfei, Li, Juan, He, Bin, Jia, Yimin, Niu, Yingjie, Wang, Chenfei, Zhao, Ruqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725837/
https://www.ncbi.nlm.nih.gov/pubmed/26758245
http://dx.doi.org/10.1038/srep19436
Descripción
Sumario:Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts.