Cargando…
Integrating mutation and gene expression cross-sectional data to infer cancer progression
BACKGROUND: A major problem in identifying the best therapeutic targets for cancer is the molecular heterogeneity of the disease. Cancer is often caused by an accumulation of mutations which produce irreversible damage to the cell’s control mechanisms of survival and proliferation. Different mutatio...
Autores principales: | Fleck, Julia L., Pavel, Ana B., Cassandras, Christos G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727329/ https://www.ncbi.nlm.nih.gov/pubmed/26810975 http://dx.doi.org/10.1186/s12918-016-0255-6 |
Ejemplares similares
-
Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity
por: Pavel, Ana B., et al.
Publicado: (2016) -
Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways
por: Pey, Jon, et al.
Publicado: (2013) -
Applying unmixing to gene expression data for tumor phylogeny inference
por: Schwartz, Russell, et al.
Publicado: (2010) -
Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data
por: Gong, Wuming, et al.
Publicado: (2015) -
Data-driven inference for the spatial scan statistic
por: Almeida, Alexandre CL, et al.
Publicado: (2011)