Cargando…

Cost-Effective Isolation of a Process Impurity of Pregabalin

Cost-effective isolation methods were developed on preparative HPLC, flash LC, and simulated moving bed (SMB) to prepare the process impurity, 3-(aminomethyl)-5-methylhex-4-enoic acid (4-ene impurity), of pregabalin. By a thorough experimental study on the different isolation techniques available, i...

Descripción completa

Detalles Bibliográficos
Autores principales: Prakash, Lakkireddy, Himaja, Malipeddi, Ramakrishna Yadav, Belly, Maheshwara Reddy, Arumalla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Austrian Journal of Pharmaceutical Sciences 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727790/
https://www.ncbi.nlm.nih.gov/pubmed/26839830
http://dx.doi.org/10.3797/scipharm.1501-16
Descripción
Sumario:Cost-effective isolation methods were developed on preparative HPLC, flash LC, and simulated moving bed (SMB) to prepare the process impurity, 3-(aminomethyl)-5-methylhex-4-enoic acid (4-ene impurity), of pregabalin. By a thorough experimental study on the different isolation techniques available, it was concluded that SMB was the most cost-effective. Hence, it was a continuous chromatography that utilized the advantage of SMB so that a high quantity of the impurity was generated in a short period of time. SMB was equipped with eight reversed-phased columns and was used to separate the process impurity of pregabalin. The effects of flow rate in zone 2 (Q2) and 3 (Q3), as well as switching time, on the operating performance parameters like purity, productivity, and desorbent consumption were studied. Operating conditions leading to more than 90% purity in the raffinate outlet stream were identified, together with those achieving optimal performance. All of these developed methods are novel, cost-effective, and can be applied to the isolation of other process- and stability-related impurities of pregabalin.