Cargando…

Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method

The monitoring of the plasmatic concentrations of cardiovascular drugs is crucial for understanding their pharmacokinetics and pharmacodynamics. A simple, sensitive, specific, and high-throughput liquid chromatography/tandem mass spectrometry (LC–MS/MS) method was developed and validated for the sim...

Descripción completa

Detalles Bibliográficos
Autores principales: Dubey, Ramkumar, Ghosh, Manik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Austrian Journal of Pharmaceutical Sciences 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729183/
https://www.ncbi.nlm.nih.gov/pubmed/26839805
http://dx.doi.org/10.3797/scipharm.1410-15
_version_ 1782412233602498560
author Dubey, Ramkumar
Ghosh, Manik
author_facet Dubey, Ramkumar
Ghosh, Manik
author_sort Dubey, Ramkumar
collection PubMed
description The monitoring of the plasmatic concentrations of cardiovascular drugs is crucial for understanding their pharmacokinetics and pharmacodynamics. A simple, sensitive, specific, and high-throughput liquid chromatography/tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous estimation and pharmacokinetic study of losartan (LOS), losartan carboxylic acid (LCA), ramipril (RAM), ramiprilate (RPT), and hydrochlorothiazide (HCZ) in rat plasma using irbesartan (IBS) and metolazone (MET) as internal standards (ISs). After solid phase extraction (SPE), analytes and ISs were separated on an Agilent Poroshell 120, EC-C18 (50 mm × 4.6 mm, i.d., 2.7 μm) column with a mobile phase consisting of methanol/water (85:15, v/v) containing 5 mmol/L ammonium formate and 0.1% formic acid at a flow rate of 0.4 mL/min. The precursor → product ion transitions for the analytes and ISs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) mode and switching the electrospray ionization (ESI) mode during chromatography from positive (to detect LOS, LCA, RAM, RPT, and IBS) to negative (to detect HCZ and MET). The method was validated as per the FDA guidelines and it exhibited sufficient specificity, accuracy, and precision. The method was found to be linear in the range of 3–3000 ng/mL for LOS and LCA, 0.1–200 ng/mL for RAM and RPT, and 1–1500 ng/mL for HCZ. The described method was successfully applied to the preclinical pharmacokinetic study of analytes after oral administration of a mixture of LOS (10 mg/kg), RAM (1 mg/kg), and HCZ (2.5 mg/kg) in rats.
format Online
Article
Text
id pubmed-4729183
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher The Austrian Journal of Pharmaceutical Sciences
record_format MEDLINE/PubMed
spelling pubmed-47291832016-02-02 Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method Dubey, Ramkumar Ghosh, Manik Sci Pharm Research Article The monitoring of the plasmatic concentrations of cardiovascular drugs is crucial for understanding their pharmacokinetics and pharmacodynamics. A simple, sensitive, specific, and high-throughput liquid chromatography/tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous estimation and pharmacokinetic study of losartan (LOS), losartan carboxylic acid (LCA), ramipril (RAM), ramiprilate (RPT), and hydrochlorothiazide (HCZ) in rat plasma using irbesartan (IBS) and metolazone (MET) as internal standards (ISs). After solid phase extraction (SPE), analytes and ISs were separated on an Agilent Poroshell 120, EC-C18 (50 mm × 4.6 mm, i.d., 2.7 μm) column with a mobile phase consisting of methanol/water (85:15, v/v) containing 5 mmol/L ammonium formate and 0.1% formic acid at a flow rate of 0.4 mL/min. The precursor → product ion transitions for the analytes and ISs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) mode and switching the electrospray ionization (ESI) mode during chromatography from positive (to detect LOS, LCA, RAM, RPT, and IBS) to negative (to detect HCZ and MET). The method was validated as per the FDA guidelines and it exhibited sufficient specificity, accuracy, and precision. The method was found to be linear in the range of 3–3000 ng/mL for LOS and LCA, 0.1–200 ng/mL for RAM and RPT, and 1–1500 ng/mL for HCZ. The described method was successfully applied to the preclinical pharmacokinetic study of analytes after oral administration of a mixture of LOS (10 mg/kg), RAM (1 mg/kg), and HCZ (2.5 mg/kg) in rats. The Austrian Journal of Pharmaceutical Sciences 2015 2014-11-30 /pmc/articles/PMC4729183/ /pubmed/26839805 http://dx.doi.org/10.3797/scipharm.1410-15 Text en Copyright: © Dubey and Ghosh et al. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Dubey, Ramkumar
Ghosh, Manik
Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method
title Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method
title_full Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method
title_fullStr Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method
title_full_unstemmed Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method
title_short Simultaneous Determination and Pharmacokinetic Study of Losartan, Losartan Carboxylic Acid, Ramipril, Ramiprilat, and Hydrochlorothiazide in Rat Plasma by a Liquid Chromatography/Tandem Mass Spectrometry Method
title_sort simultaneous determination and pharmacokinetic study of losartan, losartan carboxylic acid, ramipril, ramiprilat, and hydrochlorothiazide in rat plasma by a liquid chromatography/tandem mass spectrometry method
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729183/
https://www.ncbi.nlm.nih.gov/pubmed/26839805
http://dx.doi.org/10.3797/scipharm.1410-15
work_keys_str_mv AT dubeyramkumar simultaneousdeterminationandpharmacokineticstudyoflosartanlosartancarboxylicacidramiprilramiprilatandhydrochlorothiazideinratplasmabyaliquidchromatographytandemmassspectrometrymethod
AT ghoshmanik simultaneousdeterminationandpharmacokineticstudyoflosartanlosartancarboxylicacidramiprilramiprilatandhydrochlorothiazideinratplasmabyaliquidchromatographytandemmassspectrometrymethod