Cargando…

pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens

Cancer immunotherapy has gained significant momentum from recent clinical successes of checkpoint blockade inhibition. Massively parallel sequence analysis suggests a connection between mutational load and response to this class of therapy. Methods to identify which tumor-specific mutant peptides (n...

Descripción completa

Detalles Bibliográficos
Autores principales: Hundal, Jasreet, Carreno, Beatriz M., Petti, Allegra A., Linette, Gerald P., Griffith, Obi L., Mardis, Elaine R., Griffith, Malachi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733280/
https://www.ncbi.nlm.nih.gov/pubmed/26825632
http://dx.doi.org/10.1186/s13073-016-0264-5
_version_ 1782412809914548224
author Hundal, Jasreet
Carreno, Beatriz M.
Petti, Allegra A.
Linette, Gerald P.
Griffith, Obi L.
Mardis, Elaine R.
Griffith, Malachi
author_facet Hundal, Jasreet
Carreno, Beatriz M.
Petti, Allegra A.
Linette, Gerald P.
Griffith, Obi L.
Mardis, Elaine R.
Griffith, Malachi
author_sort Hundal, Jasreet
collection PubMed
description Cancer immunotherapy has gained significant momentum from recent clinical successes of checkpoint blockade inhibition. Massively parallel sequence analysis suggests a connection between mutational load and response to this class of therapy. Methods to identify which tumor-specific mutant peptides (neoantigens) can elicit anti-tumor T cell immunity are needed to improve predictions of checkpoint therapy response and to identify targets for vaccines and adoptive T cell therapies. Here, we present a flexible, streamlined computational workflow for identification of personalized Variant Antigens by Cancer Sequencing (pVAC-Seq) that integrates tumor mutation and expression data (DNA- and RNA-Seq). pVAC-Seq is available at https://github.com/griffithlab/pVAC-Seq. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0264-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4733280
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47332802016-01-31 pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens Hundal, Jasreet Carreno, Beatriz M. Petti, Allegra A. Linette, Gerald P. Griffith, Obi L. Mardis, Elaine R. Griffith, Malachi Genome Med Method Cancer immunotherapy has gained significant momentum from recent clinical successes of checkpoint blockade inhibition. Massively parallel sequence analysis suggests a connection between mutational load and response to this class of therapy. Methods to identify which tumor-specific mutant peptides (neoantigens) can elicit anti-tumor T cell immunity are needed to improve predictions of checkpoint therapy response and to identify targets for vaccines and adoptive T cell therapies. Here, we present a flexible, streamlined computational workflow for identification of personalized Variant Antigens by Cancer Sequencing (pVAC-Seq) that integrates tumor mutation and expression data (DNA- and RNA-Seq). pVAC-Seq is available at https://github.com/griffithlab/pVAC-Seq. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0264-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-01-29 /pmc/articles/PMC4733280/ /pubmed/26825632 http://dx.doi.org/10.1186/s13073-016-0264-5 Text en © Hundal et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Hundal, Jasreet
Carreno, Beatriz M.
Petti, Allegra A.
Linette, Gerald P.
Griffith, Obi L.
Mardis, Elaine R.
Griffith, Malachi
pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
title pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
title_full pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
title_fullStr pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
title_full_unstemmed pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
title_short pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
title_sort pvac-seq: a genome-guided in silico approach to identifying tumor neoantigens
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733280/
https://www.ncbi.nlm.nih.gov/pubmed/26825632
http://dx.doi.org/10.1186/s13073-016-0264-5
work_keys_str_mv AT hundaljasreet pvacseqagenomeguidedinsilicoapproachtoidentifyingtumorneoantigens
AT carrenobeatrizm pvacseqagenomeguidedinsilicoapproachtoidentifyingtumorneoantigens
AT pettiallegraa pvacseqagenomeguidedinsilicoapproachtoidentifyingtumorneoantigens
AT linettegeraldp pvacseqagenomeguidedinsilicoapproachtoidentifyingtumorneoantigens
AT griffithobil pvacseqagenomeguidedinsilicoapproachtoidentifyingtumorneoantigens
AT mardiselainer pvacseqagenomeguidedinsilicoapproachtoidentifyingtumorneoantigens
AT griffithmalachi pvacseqagenomeguidedinsilicoapproachtoidentifyingtumorneoantigens