Cargando…
ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling
BACKGROUND: Determination of acute toxicity, expressed as median lethal dose (LD(50)), is one of the most important steps in drug discovery pipeline. Because in vivo assays for oral acute toxicity in mammals are time-consuming and costly, there is thus an urgent need to develop in silico prediction...
Autores principales: | Lei, Tailong, Li, Youyong, Song, Yunlong, Li, Dan, Sun, Huiyong, Hou, Tingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736633/ https://www.ncbi.nlm.nih.gov/pubmed/26839598 http://dx.doi.org/10.1186/s13321-016-0117-7 |
Ejemplares similares
-
ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning
por: Jiang, Dejun, et al.
Publicado: (2020) -
Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein–RNA complexes
por: Chen, Fu, et al.
Publicado: (2018) -
ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties
por: Xiong, Guoli, et al.
Publicado: (2021) -
Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery
por: Sun, Huiyong, et al.
Publicado: (2016) -
P-loop Conformation Governed Crizotinib Resistance in G2032R-Mutated ROS1 Tyrosine Kinase: Clues from Free Energy Landscape
por: Sun, Huiyong, et al.
Publicado: (2014)