Cargando…

Liquid-theory analogy of direct-coupling analysis of multiple-sequence alignment and its implications for protein structure prediction

The direct-coupling analysis is a powerful method for protein contact prediction, and enables us to extract “direct” correlations between distant sites that are latent in “indirect” correlations observed in a protein multiple-sequence alignment. I show that the direct correlation can be obtained by...

Descripción completa

Detalles Bibliográficos
Autor principal: Kinjo, Akira R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Biophysical Society of Japan (BSJ) 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736835/
https://www.ncbi.nlm.nih.gov/pubmed/27493860
http://dx.doi.org/10.2142/biophysico.12.0_117
Descripción
Sumario:The direct-coupling analysis is a powerful method for protein contact prediction, and enables us to extract “direct” correlations between distant sites that are latent in “indirect” correlations observed in a protein multiple-sequence alignment. I show that the direct correlation can be obtained by using a formulation analogous to the Ornstein-Zernike integral equation in liquid theory. This formulation intuitively illustrates how the indirect or apparent correlation arises from an infinite series of direct correlations, and provides interesting insights into protein structure prediction.