Cargando…
Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain
Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain develo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737457/ https://www.ncbi.nlm.nih.gov/pubmed/26881131 http://dx.doi.org/10.1155/2016/7434191 |
_version_ | 1782413482363191296 |
---|---|
author | Lee, Han-Chung Tan, Kai-Leng Cheah, Pike-See Ling, King-Hwa |
author_facet | Lee, Han-Chung Tan, Kai-Leng Cheah, Pike-See Ling, King-Hwa |
author_sort | Lee, Han-Chung |
collection | PubMed |
description | Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition. |
format | Online Article Text |
id | pubmed-4737457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-47374572016-02-15 Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain Lee, Han-Chung Tan, Kai-Leng Cheah, Pike-See Ling, King-Hwa Neural Plast Review Article Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition. Hindawi Publishing Corporation 2016 2016-01-12 /pmc/articles/PMC4737457/ /pubmed/26881131 http://dx.doi.org/10.1155/2016/7434191 Text en Copyright © 2016 Han-Chung Lee et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Lee, Han-Chung Tan, Kai-Leng Cheah, Pike-See Ling, King-Hwa Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain |
title | Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain |
title_full | Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain |
title_fullStr | Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain |
title_full_unstemmed | Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain |
title_short | Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain |
title_sort | potential role of jak-stat signaling pathway in the neurogenic-to-gliogenic shift in down syndrome brain |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737457/ https://www.ncbi.nlm.nih.gov/pubmed/26881131 http://dx.doi.org/10.1155/2016/7434191 |
work_keys_str_mv | AT leehanchung potentialroleofjakstatsignalingpathwayintheneurogenictogliogenicshiftindownsyndromebrain AT tankaileng potentialroleofjakstatsignalingpathwayintheneurogenictogliogenicshiftindownsyndromebrain AT cheahpikesee potentialroleofjakstatsignalingpathwayintheneurogenictogliogenicshiftindownsyndromebrain AT lingkinghwa potentialroleofjakstatsignalingpathwayintheneurogenictogliogenicshiftindownsyndromebrain |