Cargando…
A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-ba...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737654/ https://www.ncbi.nlm.nih.gov/pubmed/26779719 http://dx.doi.org/10.7554/eLife.12345 |
_version_ | 1782413501257482240 |
---|---|
author | Viader, Andreu Ogasawara, Daisuke Joslyn, Christopher M Sanchez-Alavez, Manuel Mori, Simone Nguyen, William Conti, Bruno Cravatt, Benjamin F |
author_facet | Viader, Andreu Ogasawara, Daisuke Joslyn, Christopher M Sanchez-Alavez, Manuel Mori, Simone Nguyen, William Conti, Bruno Cravatt, Benjamin F |
author_sort | Viader, Andreu |
collection | PubMed |
description | Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 |
format | Online Article Text |
id | pubmed-4737654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-47376542016-02-04 A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation Viader, Andreu Ogasawara, Daisuke Joslyn, Christopher M Sanchez-Alavez, Manuel Mori, Simone Nguyen, William Conti, Bruno Cravatt, Benjamin F eLife Biochemistry Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 eLife Sciences Publications, Ltd 2016-01-18 /pmc/articles/PMC4737654/ /pubmed/26779719 http://dx.doi.org/10.7554/eLife.12345 Text en © 2015, Viader et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry Viader, Andreu Ogasawara, Daisuke Joslyn, Christopher M Sanchez-Alavez, Manuel Mori, Simone Nguyen, William Conti, Bruno Cravatt, Benjamin F A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation |
title | A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation |
title_full | A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation |
title_fullStr | A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation |
title_full_unstemmed | A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation |
title_short | A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation |
title_sort | chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation |
topic | Biochemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737654/ https://www.ncbi.nlm.nih.gov/pubmed/26779719 http://dx.doi.org/10.7554/eLife.12345 |
work_keys_str_mv | AT viaderandreu achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT ogasawaradaisuke achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT joslynchristopherm achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT sanchezalavezmanuel achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT morisimone achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT nguyenwilliam achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT contibruno achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT cravattbenjaminf achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT viaderandreu chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT ogasawaradaisuke chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT joslynchristopherm chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT sanchezalavezmanuel chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT morisimone chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT nguyenwilliam chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT contibruno chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation AT cravattbenjaminf chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation |