Cargando…

A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Viader, Andreu, Ogasawara, Daisuke, Joslyn, Christopher M, Sanchez-Alavez, Manuel, Mori, Simone, Nguyen, William, Conti, Bruno, Cravatt, Benjamin F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737654/
https://www.ncbi.nlm.nih.gov/pubmed/26779719
http://dx.doi.org/10.7554/eLife.12345
_version_ 1782413501257482240
author Viader, Andreu
Ogasawara, Daisuke
Joslyn, Christopher M
Sanchez-Alavez, Manuel
Mori, Simone
Nguyen, William
Conti, Bruno
Cravatt, Benjamin F
author_facet Viader, Andreu
Ogasawara, Daisuke
Joslyn, Christopher M
Sanchez-Alavez, Manuel
Mori, Simone
Nguyen, William
Conti, Bruno
Cravatt, Benjamin F
author_sort Viader, Andreu
collection PubMed
description Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001
format Online
Article
Text
id pubmed-4737654
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-47376542016-02-04 A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation Viader, Andreu Ogasawara, Daisuke Joslyn, Christopher M Sanchez-Alavez, Manuel Mori, Simone Nguyen, William Conti, Bruno Cravatt, Benjamin F eLife Biochemistry Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 eLife Sciences Publications, Ltd 2016-01-18 /pmc/articles/PMC4737654/ /pubmed/26779719 http://dx.doi.org/10.7554/eLife.12345 Text en © 2015, Viader et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biochemistry
Viader, Andreu
Ogasawara, Daisuke
Joslyn, Christopher M
Sanchez-Alavez, Manuel
Mori, Simone
Nguyen, William
Conti, Bruno
Cravatt, Benjamin F
A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
title A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
title_full A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
title_fullStr A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
title_full_unstemmed A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
title_short A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
title_sort chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation
topic Biochemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737654/
https://www.ncbi.nlm.nih.gov/pubmed/26779719
http://dx.doi.org/10.7554/eLife.12345
work_keys_str_mv AT viaderandreu achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT ogasawaradaisuke achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT joslynchristopherm achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT sanchezalavezmanuel achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT morisimone achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT nguyenwilliam achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT contibruno achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT cravattbenjaminf achemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT viaderandreu chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT ogasawaradaisuke chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT joslynchristopherm chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT sanchezalavezmanuel chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT morisimone chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT nguyenwilliam chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT contibruno chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation
AT cravattbenjaminf chemicalproteomicatlasofbrainserinehydrolasesidentifiescelltypespecificpathwaysregulatingneuroinflammation