Cargando…
Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments
BACKGROUND: The provision of additional information is often assumed to improve consumption decisions, allowing consumers to more accurately weigh the costs and benefits of alternatives. However, increasing the complexity of decision problems may prompt changes in information processing. This is par...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739384/ https://www.ncbi.nlm.nih.gov/pubmed/26842646 http://dx.doi.org/10.1186/s12911-016-0251-1 |
_version_ | 1782413738017554432 |
---|---|
author | Spinks, Jean Mortimer, Duncan |
author_facet | Spinks, Jean Mortimer, Duncan |
author_sort | Spinks, Jean |
collection | PubMed |
description | BACKGROUND: The provision of additional information is often assumed to improve consumption decisions, allowing consumers to more accurately weigh the costs and benefits of alternatives. However, increasing the complexity of decision problems may prompt changes in information processing. This is particularly relevant for experimental methods such as discrete choice experiments (DCEs) where the researcher can manipulate the complexity of the decision problem. The primary aims of this study are (i) to test whether consumers actually process additional information in an already complex decision problem, and (ii) consider the implications of any such ‘complexity-driven’ changes in information processing for design and analysis of DCEs. METHODS: A discrete choice experiment (DCE) is used to simulate a complex decision problem; here, the choice between complementary and conventional medicine for different health conditions. Eye-tracking technology is used to capture the number of times and the duration that a participant looks at any part of a computer screen during completion of DCE choice sets. From this we can analyse what has become known in the DCE literature as ‘attribute non-attendance’ (ANA). Using data from 32 participants, we model the likelihood of ANA as a function of choice set complexity and respondent characteristics using fixed and random effects models to account for repeated choice set completion. We also model whether participants are consistent with regard to which characteristics (attributes) they consider across choice sets. RESULTS: We find that complexity is the strongest predictor of ANA when other possible influences, such as time pressure, ordering effects, survey specific effects and socio-demographic variables (including proxies for prior experience with the decision problem) are considered. We also find that most participants do not apply a consistent information processing strategy across choice sets. CONCLUSIONS: Eye-tracking technology shows promise as a way of obtaining additional information from consumer research, improving DCE design, and informing the design of policy measures. With regards to DCE design, results from the present study suggest that eye-tracking data can identify the point at which adding complexity (and realism) to DCE choice scenarios becomes self-defeating due to unacceptable increases in ANA. Eye-tracking data therefore has clear application in the construction of guidelines for DCE design and during piloting of DCE choice scenarios. With regards to design of policy measures such as labelling requirements for CAM and conventional medicines, the provision of additional information has the potential to make difficult decisions even harder and may not have the desired effect on decision-making. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12911-016-0251-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4739384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47393842016-02-04 Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments Spinks, Jean Mortimer, Duncan BMC Med Inform Decis Mak Research Article BACKGROUND: The provision of additional information is often assumed to improve consumption decisions, allowing consumers to more accurately weigh the costs and benefits of alternatives. However, increasing the complexity of decision problems may prompt changes in information processing. This is particularly relevant for experimental methods such as discrete choice experiments (DCEs) where the researcher can manipulate the complexity of the decision problem. The primary aims of this study are (i) to test whether consumers actually process additional information in an already complex decision problem, and (ii) consider the implications of any such ‘complexity-driven’ changes in information processing for design and analysis of DCEs. METHODS: A discrete choice experiment (DCE) is used to simulate a complex decision problem; here, the choice between complementary and conventional medicine for different health conditions. Eye-tracking technology is used to capture the number of times and the duration that a participant looks at any part of a computer screen during completion of DCE choice sets. From this we can analyse what has become known in the DCE literature as ‘attribute non-attendance’ (ANA). Using data from 32 participants, we model the likelihood of ANA as a function of choice set complexity and respondent characteristics using fixed and random effects models to account for repeated choice set completion. We also model whether participants are consistent with regard to which characteristics (attributes) they consider across choice sets. RESULTS: We find that complexity is the strongest predictor of ANA when other possible influences, such as time pressure, ordering effects, survey specific effects and socio-demographic variables (including proxies for prior experience with the decision problem) are considered. We also find that most participants do not apply a consistent information processing strategy across choice sets. CONCLUSIONS: Eye-tracking technology shows promise as a way of obtaining additional information from consumer research, improving DCE design, and informing the design of policy measures. With regards to DCE design, results from the present study suggest that eye-tracking data can identify the point at which adding complexity (and realism) to DCE choice scenarios becomes self-defeating due to unacceptable increases in ANA. Eye-tracking data therefore has clear application in the construction of guidelines for DCE design and during piloting of DCE choice scenarios. With regards to design of policy measures such as labelling requirements for CAM and conventional medicines, the provision of additional information has the potential to make difficult decisions even harder and may not have the desired effect on decision-making. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12911-016-0251-1) contains supplementary material, which is available to authorized users. BioMed Central 2016-02-03 /pmc/articles/PMC4739384/ /pubmed/26842646 http://dx.doi.org/10.1186/s12911-016-0251-1 Text en © Spinks and Mortimer. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Spinks, Jean Mortimer, Duncan Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments |
title | Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments |
title_full | Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments |
title_fullStr | Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments |
title_full_unstemmed | Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments |
title_short | Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments |
title_sort | lost in the crowd? using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739384/ https://www.ncbi.nlm.nih.gov/pubmed/26842646 http://dx.doi.org/10.1186/s12911-016-0251-1 |
work_keys_str_mv | AT spinksjean lostinthecrowdusingeyetrackingtoinvestigatetheeffectofcomplexityonattributenonattendanceindiscretechoiceexperiments AT mortimerduncan lostinthecrowdusingeyetrackingtoinvestigatetheeffectofcomplexityonattributenonattendanceindiscretechoiceexperiments |