Cargando…

RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair

XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins p...

Descripción completa

Detalles Bibliográficos
Autores principales: Lescale, Chloé, Abramowski, Vincent, Bedora-Faure, Marie, Murigneux, Valentine, Vera, Gabriella, Roth, David B., Revy, Patrick, de Villartay, Jean-Pierre, Deriano, Ludovic
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740868/
https://www.ncbi.nlm.nih.gov/pubmed/26833222
http://dx.doi.org/10.1038/ncomms10529
Descripción
Sumario:XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2(c/c) mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites. In addition, Rag2(c/c) XLF(−/−) p53(−/−) mice develop aggressive pro-B cell lymphomas bearing complex chromosomal translocations and gene amplifications involving Igh and c-myc/pvt1 loci. Our results reveal an unanticipated functional interplay between the RAG complex and XLF in repairing RAG-induced DSBs and maintaining genome integrity during antigen receptor gene assembly.