Cargando…
Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways
Angiogenesis and epidermal growth factor receptor (EGFR) inhibition has been shown to have anti-tumour efficacy, and enhance the therapeutic effects of cytotoxic chemotherapy in metastatic colorectal cancer. The interplay of signalling alterations and changes in metabolism and hypoxia in tumours fol...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741991/ https://www.ncbi.nlm.nih.gov/pubmed/26517691 |
_version_ | 1782414116437098496 |
---|---|
author | Greening, David W. Lee, Sze Ting Ji, Hong Simpson, Richard J. Rigopoulos, Angela Murone, Carmel Fang, Catherine Gong, Sylvia O'Keefe, Graeme Scott, Andrew M. |
author_facet | Greening, David W. Lee, Sze Ting Ji, Hong Simpson, Richard J. Rigopoulos, Angela Murone, Carmel Fang, Catherine Gong, Sylvia O'Keefe, Graeme Scott, Andrew M. |
author_sort | Greening, David W. |
collection | PubMed |
description | Angiogenesis and epidermal growth factor receptor (EGFR) inhibition has been shown to have anti-tumour efficacy, and enhance the therapeutic effects of cytotoxic chemotherapy in metastatic colorectal cancer. The interplay of signalling alterations and changes in metabolism and hypoxia in tumours following anti-VEGF and anti-EGFR treatment is not well understood. We aimed to explore the pharmacodynamics of cetuximab and bevacizumab treatment in human colon carcinoma tumour cells in vitro and xenograft models through proteomic profiling, molecular imaging of metabolism and hypoxia, and evaluation of therapy-induced changes in tumour cells and the tumour microenvironment. Both cetuximab and bevacizumab inhibited tumour growth in vivo, and this effect was associated with selectively perturbed glucose metabolism and reduced hypoxic volumes based on PET/MRI imaging. Global proteomic profiling of xenograft tumours (in presence of cetuximab, bevacizumab, and combination treatments) revealed alterations in proteins involved in glucose, lipid and fatty acid metabolism (e.g., GPD2, ATP5B, STAT3, FASN), as well as hypoxic regulators and vasculogenesis (e.g., ATP5B, THBS1, HSPG2). These findings correlated with western immunoblotting (xenograft lysates) and histological examination by immunohistochemistry. These results define important mechanistic insight into the dynamic changes in metabolic and hypoxic response pathways in colorectal tumours following treatment with cetuximab and bevacizumab, and highlight the ability of these therapies to selectively impact on tumour cells and extracellular microenvironment. |
format | Online Article Text |
id | pubmed-4741991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-47419912016-03-17 Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways Greening, David W. Lee, Sze Ting Ji, Hong Simpson, Richard J. Rigopoulos, Angela Murone, Carmel Fang, Catherine Gong, Sylvia O'Keefe, Graeme Scott, Andrew M. Oncotarget Research Paper Angiogenesis and epidermal growth factor receptor (EGFR) inhibition has been shown to have anti-tumour efficacy, and enhance the therapeutic effects of cytotoxic chemotherapy in metastatic colorectal cancer. The interplay of signalling alterations and changes in metabolism and hypoxia in tumours following anti-VEGF and anti-EGFR treatment is not well understood. We aimed to explore the pharmacodynamics of cetuximab and bevacizumab treatment in human colon carcinoma tumour cells in vitro and xenograft models through proteomic profiling, molecular imaging of metabolism and hypoxia, and evaluation of therapy-induced changes in tumour cells and the tumour microenvironment. Both cetuximab and bevacizumab inhibited tumour growth in vivo, and this effect was associated with selectively perturbed glucose metabolism and reduced hypoxic volumes based on PET/MRI imaging. Global proteomic profiling of xenograft tumours (in presence of cetuximab, bevacizumab, and combination treatments) revealed alterations in proteins involved in glucose, lipid and fatty acid metabolism (e.g., GPD2, ATP5B, STAT3, FASN), as well as hypoxic regulators and vasculogenesis (e.g., ATP5B, THBS1, HSPG2). These findings correlated with western immunoblotting (xenograft lysates) and histological examination by immunohistochemistry. These results define important mechanistic insight into the dynamic changes in metabolic and hypoxic response pathways in colorectal tumours following treatment with cetuximab and bevacizumab, and highlight the ability of these therapies to selectively impact on tumour cells and extracellular microenvironment. Impact Journals LLC 2015-10-26 /pmc/articles/PMC4741991/ /pubmed/26517691 Text en Copyright: © 2015 Greening et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Greening, David W. Lee, Sze Ting Ji, Hong Simpson, Richard J. Rigopoulos, Angela Murone, Carmel Fang, Catherine Gong, Sylvia O'Keefe, Graeme Scott, Andrew M. Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways |
title | Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways |
title_full | Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways |
title_fullStr | Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways |
title_full_unstemmed | Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways |
title_short | Molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways |
title_sort | molecular profiling of cetuximab and bevacizumab treatment of colorectal tumours reveals perturbations in metabolic and hypoxic response pathways |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741991/ https://www.ncbi.nlm.nih.gov/pubmed/26517691 |
work_keys_str_mv | AT greeningdavidw molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT leeszeting molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT jihong molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT simpsonrichardj molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT rigopoulosangela molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT muronecarmel molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT fangcatherine molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT gongsylvia molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT okeefegraeme molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways AT scottandrewm molecularprofilingofcetuximabandbevacizumabtreatmentofcolorectaltumoursrevealsperturbationsinmetabolicandhypoxicresponsepathways |