Cargando…

Interplay between YB-1 and IL-6 promotes the metastatic phenotype in breast cancer cells

Epithelial to mesenchymal transition (EMT) induces cell plasticity and promotes metastasis. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) and the pleiotropic cytokine interleukin 6 (IL-6) have both been implicated in tumor cell metastasis and EMT, but via distinct pathways. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Castellana, Bàrbara, Aasen, Trond, Moreno-Bueno, Gema, Dunn, Sandra E., Ramón y Cajal, Santiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741996/
https://www.ncbi.nlm.nih.gov/pubmed/26512918
Descripción
Sumario:Epithelial to mesenchymal transition (EMT) induces cell plasticity and promotes metastasis. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) and the pleiotropic cytokine interleukin 6 (IL-6) have both been implicated in tumor cell metastasis and EMT, but via distinct pathways. Here, we show that direct interplay between YB-1 and IL-6 regulates breast cancer metastasis. Overexpression of YB-1 in breast cancer cell lines induced IL-6 production while stimulation with IL-6 increased YB-1 expression and YB-1 phosphorylation. Either approach was sufficient to induce EMT features, including increased cell migration and invasion. Silencing of YB-1 partially reverted the EMT and blocked the effect of IL-6 while inhibition of IL-6 signaling blocked the phenotype induced by YB-1 overexpression, demonstrating a clear YB-1/IL-6 interdependence. Our findings describe a novel signaling network in which YB-1 regulates IL-6, and vice versa, creating a positive feed-forward loop driving EMT-like metastatic features during breast cancer progression. Identification of signaling partners or pathways underlying this co-dependence may uncover novel therapeutic opportunities.