Cargando…

From competency to dormancy: a 3D model to study cancer cells and drug responsiveness

BACKGROUND: The heterogeneous and dynamic tumor microenvironment has significant impact on cancer cell proliferation, invasion, drug response, and is probably associated with entering dormancy and recurrence. However, these complex settings are hard to recapitulate in vitro. METHODS: In this study,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Josephine Y., Tan, Shih-Jye, Wu, Yi-Chen, Yang, Zhi, Hoang, Ba X., Han, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743174/
https://www.ncbi.nlm.nih.gov/pubmed/26847768
http://dx.doi.org/10.1186/s12967-016-0798-8
Descripción
Sumario:BACKGROUND: The heterogeneous and dynamic tumor microenvironment has significant impact on cancer cell proliferation, invasion, drug response, and is probably associated with entering dormancy and recurrence. However, these complex settings are hard to recapitulate in vitro. METHODS: In this study, we mimic different restriction forces that tumor cells are exposed to using a physiologically relevant 3D model with tunable mechanical stiffness. RESULTS: Breast cancer MDA-MB-231, colon cancer HCT-116 and pancreatic cancer CFPAC cells embedded in the stiffer gels exhibit a changed morphology and cluster formation, prolonged doubling time, and a slower metabolism rate, recapitulating the pathway from competency to dormancy. Altering environmental restriction allows them to re-enter and exit dormant conditions and change their sensitivities to drugs such as paclitaxol and gemcitabine. Cells surviving drug treatments can still regain competent growth and form tumors in vivo. CONCLUSION: We have successfully developed an in vitro 3D model to mimic the effects of matrix restriction on tumor cells and this high throughput model can be used to study tumor cellular functions and their drug responses in their different states. This all in one platform may aid effective drug development.