Cargando…

A Vector with a Single Promoter for In Vitro Transcription and Mammalian Cell Expression of CRISPR gRNAs

The genomes of more than 50 organisms have now been manipulated due to rapid advancement of gene editing technology. One way to perform gene editing in the mouse using the CRISPR/CAS system, guide RNA (gRNA) and CAS9 mRNA transcribed in vitro are microinjected into fertilized eggs that are then allo...

Descripción completa

Detalles Bibliográficos
Autores principales: Romanienko, Peter J., Giacalone, Joseph, Ingenito, Joanne, Wang, Yijie, Isaka, Mayumi, Johnson, Thomas, You, Yun, Mark, Willie H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744079/
https://www.ncbi.nlm.nih.gov/pubmed/26849369
http://dx.doi.org/10.1371/journal.pone.0148362
Descripción
Sumario:The genomes of more than 50 organisms have now been manipulated due to rapid advancement of gene editing technology. One way to perform gene editing in the mouse using the CRISPR/CAS system, guide RNA (gRNA) and CAS9 mRNA transcribed in vitro are microinjected into fertilized eggs that are then allowed to develop to term. As a rule, gRNAs are tested first in tissue culture cells and the one with the highest locus-specific cleavage activity is chosen for microinjection. For cell transfections, gRNAs are typically expressed using the human U6 promoter (hU6). However, gRNAs for microinjection into zygotes are obtained by in vitro transcription from a T7 bacteriophage promoter in a separate plasmid vector. Here, we describe the design and construction of a combined U6T7 hybrid promoter from which the same gRNA sequence can be expressed. An expression vector containing such a hybrid promoter can now be used to generate gRNA for testing in mammalian cells as well as for microinjection purposes. The gRNAs expressed and transcribed from this vector are found to be functional in cells as well as in mice.