Cargando…
Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner
Physical forces arising in the extra-cellular environment have a profound impact on cell fate and gene regulation; however the underlying biophysical mechanisms that control this sensitivity remain elusive. It is hypothesized that gene expression may be influenced by the physical deformation of the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759536/ https://www.ncbi.nlm.nih.gov/pubmed/26892269 http://dx.doi.org/10.1038/srep21300 |
_version_ | 1782416741140267008 |
---|---|
author | Haase, Kristina Macadangdang, Joan K. L. Edrington, Claire H. Cuerrier, Charles M. Hadjiantoniou, Sebastian Harden, James L. Skerjanc, Ilona S. Pelling, Andrew E. |
author_facet | Haase, Kristina Macadangdang, Joan K. L. Edrington, Claire H. Cuerrier, Charles M. Hadjiantoniou, Sebastian Harden, James L. Skerjanc, Ilona S. Pelling, Andrew E. |
author_sort | Haase, Kristina |
collection | PubMed |
description | Physical forces arising in the extra-cellular environment have a profound impact on cell fate and gene regulation; however the underlying biophysical mechanisms that control this sensitivity remain elusive. It is hypothesized that gene expression may be influenced by the physical deformation of the nucleus in response to force. Here, using 3T3s as a model, we demonstrate that extra-cellular forces cause cell nuclei to rapidly deform (<1 s) preferentially along their shorter nuclear axis, in an anisotropic manner. Nuclear anisotropy is shown to be regulated by the cytoskeleton within intact cells, with actin and microtubules resistant to orthonormal strains. Importantly, nuclear anisotropy is intrinsic, and observed in isolated nuclei. The sensitivity of this behaviour is influenced by chromatin organization and lamin-A expression. An anisotropic response to force was also highly conserved amongst an array of examined nuclei from differentiated and undifferentiated cell types. Although the functional purpose of this conserved material property remains elusive, it may provide a mechanism through which mechanical cues in the microenvironment are rapidly transmitted to the genome. |
format | Online Article Text |
id | pubmed-4759536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-47595362016-02-26 Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner Haase, Kristina Macadangdang, Joan K. L. Edrington, Claire H. Cuerrier, Charles M. Hadjiantoniou, Sebastian Harden, James L. Skerjanc, Ilona S. Pelling, Andrew E. Sci Rep Article Physical forces arising in the extra-cellular environment have a profound impact on cell fate and gene regulation; however the underlying biophysical mechanisms that control this sensitivity remain elusive. It is hypothesized that gene expression may be influenced by the physical deformation of the nucleus in response to force. Here, using 3T3s as a model, we demonstrate that extra-cellular forces cause cell nuclei to rapidly deform (<1 s) preferentially along their shorter nuclear axis, in an anisotropic manner. Nuclear anisotropy is shown to be regulated by the cytoskeleton within intact cells, with actin and microtubules resistant to orthonormal strains. Importantly, nuclear anisotropy is intrinsic, and observed in isolated nuclei. The sensitivity of this behaviour is influenced by chromatin organization and lamin-A expression. An anisotropic response to force was also highly conserved amongst an array of examined nuclei from differentiated and undifferentiated cell types. Although the functional purpose of this conserved material property remains elusive, it may provide a mechanism through which mechanical cues in the microenvironment are rapidly transmitted to the genome. Nature Publishing Group 2016-02-19 /pmc/articles/PMC4759536/ /pubmed/26892269 http://dx.doi.org/10.1038/srep21300 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Haase, Kristina Macadangdang, Joan K. L. Edrington, Claire H. Cuerrier, Charles M. Hadjiantoniou, Sebastian Harden, James L. Skerjanc, Ilona S. Pelling, Andrew E. Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner |
title | Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner |
title_full | Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner |
title_fullStr | Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner |
title_full_unstemmed | Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner |
title_short | Extracellular Forces Cause the Nucleus to Deform in a Highly Controlled Anisotropic Manner |
title_sort | extracellular forces cause the nucleus to deform in a highly controlled anisotropic manner |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759536/ https://www.ncbi.nlm.nih.gov/pubmed/26892269 http://dx.doi.org/10.1038/srep21300 |
work_keys_str_mv | AT haasekristina extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner AT macadangdangjoankl extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner AT edringtonclaireh extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner AT cuerriercharlesm extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner AT hadjiantoniousebastian extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner AT hardenjamesl extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner AT skerjancilonas extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner AT pellingandrewe extracellularforcescausethenucleustodeforminahighlycontrolledanisotropicmanner |