Cargando…

How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles

In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Sen, Trochimczyk, Piotr, Sun, Lili, Wisniewska, Agnieszka, Kalwarczyk, Tomasz, Zhang, Xuzhu, Wielgus-Kutrowska, Beata, Bzowska, Agnieszka, Holyst, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763241/
https://www.ncbi.nlm.nih.gov/pubmed/26903405
http://dx.doi.org/10.1038/srep22033
_version_ 1782417232021684224
author Hou, Sen
Trochimczyk, Piotr
Sun, Lili
Wisniewska, Agnieszka
Kalwarczyk, Tomasz
Zhang, Xuzhu
Wielgus-Kutrowska, Beata
Bzowska, Agnieszka
Holyst, Robert
author_facet Hou, Sen
Trochimczyk, Piotr
Sun, Lili
Wisniewska, Agnieszka
Kalwarczyk, Tomasz
Zhang, Xuzhu
Wielgus-Kutrowska, Beata
Bzowska, Agnieszka
Holyst, Robert
author_sort Hou, Sen
collection PubMed
description In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy.
format Online
Article
Text
id pubmed-4763241
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47632412016-03-01 How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles Hou, Sen Trochimczyk, Piotr Sun, Lili Wisniewska, Agnieszka Kalwarczyk, Tomasz Zhang, Xuzhu Wielgus-Kutrowska, Beata Bzowska, Agnieszka Holyst, Robert Sci Rep Article In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy. Nature Publishing Group 2016-02-23 /pmc/articles/PMC4763241/ /pubmed/26903405 http://dx.doi.org/10.1038/srep22033 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Hou, Sen
Trochimczyk, Piotr
Sun, Lili
Wisniewska, Agnieszka
Kalwarczyk, Tomasz
Zhang, Xuzhu
Wielgus-Kutrowska, Beata
Bzowska, Agnieszka
Holyst, Robert
How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles
title How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles
title_full How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles
title_fullStr How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles
title_full_unstemmed How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles
title_short How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles
title_sort how can macromolecular crowding inhibit biological reactions? the enhanced formation of dna nanoparticles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763241/
https://www.ncbi.nlm.nih.gov/pubmed/26903405
http://dx.doi.org/10.1038/srep22033
work_keys_str_mv AT housen howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT trochimczykpiotr howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT sunlili howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT wisniewskaagnieszka howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT kalwarczyktomasz howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT zhangxuzhu howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT wielguskutrowskabeata howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT bzowskaagnieszka howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles
AT holystrobert howcanmacromolecularcrowdinginhibitbiologicalreactionstheenhancedformationofdnananoparticles