Cargando…

Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmium-induced renal toxicity

Chronic cadmium (Cd) exposure can induce renal toxicity. In Cd renal toxicity, p53 is thought to be involved. Our previous studies showed that Cd down-regulated gene expression of the UBE2D (ubiquitin-conjugating enzyme E2D) family members. Here, we aimed to define the association between UBE2D fami...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jin-Yong, Tokumoto, Maki, Fujiwara, Yasuyuki, Hasegawa, Tatsuya, Seko, Yoshiyuki, Shimada, Akinori, Satoh, Masahiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766413/
https://www.ncbi.nlm.nih.gov/pubmed/26912277
http://dx.doi.org/10.1038/srep21968
Descripción
Sumario:Chronic cadmium (Cd) exposure can induce renal toxicity. In Cd renal toxicity, p53 is thought to be involved. Our previous studies showed that Cd down-regulated gene expression of the UBE2D (ubiquitin-conjugating enzyme E2D) family members. Here, we aimed to define the association between UBE2D family members and p53-dependent apoptosis in human proximal tubular cells (HK-2 cells) treated with Cd. Cd increased intracellular p53 protein levels and decreased UBE2D2 and UBE2D4 gene expression via inhibition of YY1 and FOXF1 transcription factor activities. Double knockdown of UBE2D2 and UBE2D4 caused an increase in p53 protein levels, and knockdown of p53 attenuated not only Cd-induced apoptosis, but also Cd-induced apoptosis-related gene expression (BAX and PUMA). Additionally, the mice exposed to Cd for 6 months resulted in increased levels of p53 and induction of apoptosis in proximal tubular cells. These findings suggest that down-regulation of UBE2D family genes followed by accumulation of p53 in proximal tubular cells is an important mechanism for Cd-induced renal toxicity.