Cargando…

Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma

BACKGROUND: Signal transducers and activators of transcription (STAT) proteins are critical transcription factor that are aberrantly activated in various types of malignancies, including renal cell carcinoma (RCC). METHODS: We investigated the effect of resveratrol (RES), an edible polyphenol phytoa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Chulwon, Baek, Sang Hyun, Um, Jae-Young, Shim, Bum Sang, Ahn, Kwang Seok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766620/
https://www.ncbi.nlm.nih.gov/pubmed/26911335
http://dx.doi.org/10.1186/s12882-016-0233-7
_version_ 1782417697226620928
author Kim, Chulwon
Baek, Sang Hyun
Um, Jae-Young
Shim, Bum Sang
Ahn, Kwang Seok
author_facet Kim, Chulwon
Baek, Sang Hyun
Um, Jae-Young
Shim, Bum Sang
Ahn, Kwang Seok
author_sort Kim, Chulwon
collection PubMed
description BACKGROUND: Signal transducers and activators of transcription (STAT) proteins are critical transcription factor that are aberrantly activated in various types of malignancies, including renal cell carcinoma (RCC). METHODS: We investigated the effect of resveratrol (RES), an edible polyphenol phytoalexin on STAT3 and STAT5 activation cascade in both Caki-1 and 786-O RCC cell lines. RESULTS: We found that RES suppressed both constitutive STAT3 (tyrosine residue 705 and serine residue 727) and STAT5 (tyrosine residue 694 and 699) activation, which correlated with the suppression of the upstream kinases (JAK1, JAK2, and c-Src) in RCC. Also, RES abrogated DNA binding capacity and nuclear translocation of these two transcription factors. RES-induced an increased expression of PTPε and SHP-2 and the deletion of these two genes by small interfering RNA abolished the ability of RES to inhibit STAT3 activation, suggesting the critical role of both PTPε and SHP-2 in its possible mechanism of action. Moreover, RES induced S phase cell cycle arrest, caused induction of apoptosis, loss of mitochondrial membrane potential, and suppressed colony formation in RCC. We also found that RES downregulated the expression of STAT3/5-regulated antiapoptotic, proliferative, and metastatic gene products; and this correlated with induction of caspase-3 activation and anti-invasive activity. Beside, RES potentiated sorafenib induced inhibitory effect on constitutive STAT3 and STAT5 phosphorylation, apoptotic effects in 786-O cells, and this correlated with down-regulation of various oncogenic gene products. CONCLUSION: Overall, our results suggest that RES is a blocker of both STAT3 and STAT5 activation and thus may exert potential growth inhibitory effects against RCC cells.
format Online
Article
Text
id pubmed-4766620
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-47666202016-02-26 Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma Kim, Chulwon Baek, Sang Hyun Um, Jae-Young Shim, Bum Sang Ahn, Kwang Seok BMC Nephrol Research Article BACKGROUND: Signal transducers and activators of transcription (STAT) proteins are critical transcription factor that are aberrantly activated in various types of malignancies, including renal cell carcinoma (RCC). METHODS: We investigated the effect of resveratrol (RES), an edible polyphenol phytoalexin on STAT3 and STAT5 activation cascade in both Caki-1 and 786-O RCC cell lines. RESULTS: We found that RES suppressed both constitutive STAT3 (tyrosine residue 705 and serine residue 727) and STAT5 (tyrosine residue 694 and 699) activation, which correlated with the suppression of the upstream kinases (JAK1, JAK2, and c-Src) in RCC. Also, RES abrogated DNA binding capacity and nuclear translocation of these two transcription factors. RES-induced an increased expression of PTPε and SHP-2 and the deletion of these two genes by small interfering RNA abolished the ability of RES to inhibit STAT3 activation, suggesting the critical role of both PTPε and SHP-2 in its possible mechanism of action. Moreover, RES induced S phase cell cycle arrest, caused induction of apoptosis, loss of mitochondrial membrane potential, and suppressed colony formation in RCC. We also found that RES downregulated the expression of STAT3/5-regulated antiapoptotic, proliferative, and metastatic gene products; and this correlated with induction of caspase-3 activation and anti-invasive activity. Beside, RES potentiated sorafenib induced inhibitory effect on constitutive STAT3 and STAT5 phosphorylation, apoptotic effects in 786-O cells, and this correlated with down-regulation of various oncogenic gene products. CONCLUSION: Overall, our results suggest that RES is a blocker of both STAT3 and STAT5 activation and thus may exert potential growth inhibitory effects against RCC cells. BioMed Central 2016-02-25 /pmc/articles/PMC4766620/ /pubmed/26911335 http://dx.doi.org/10.1186/s12882-016-0233-7 Text en © Kim et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Kim, Chulwon
Baek, Sang Hyun
Um, Jae-Young
Shim, Bum Sang
Ahn, Kwang Seok
Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma
title Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma
title_full Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma
title_fullStr Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma
title_full_unstemmed Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma
title_short Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPε and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma
title_sort resveratrol attenuates constitutive stat3 and stat5 activation through induction of ptpε and shp-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766620/
https://www.ncbi.nlm.nih.gov/pubmed/26911335
http://dx.doi.org/10.1186/s12882-016-0233-7
work_keys_str_mv AT kimchulwon resveratrolattenuatesconstitutivestat3andstat5activationthroughinductionofptpeandshp2tyrosinephosphatasesandpotentiatessorafenibinducedapoptosisinrenalcellcarcinoma
AT baeksanghyun resveratrolattenuatesconstitutivestat3andstat5activationthroughinductionofptpeandshp2tyrosinephosphatasesandpotentiatessorafenibinducedapoptosisinrenalcellcarcinoma
AT umjaeyoung resveratrolattenuatesconstitutivestat3andstat5activationthroughinductionofptpeandshp2tyrosinephosphatasesandpotentiatessorafenibinducedapoptosisinrenalcellcarcinoma
AT shimbumsang resveratrolattenuatesconstitutivestat3andstat5activationthroughinductionofptpeandshp2tyrosinephosphatasesandpotentiatessorafenibinducedapoptosisinrenalcellcarcinoma
AT ahnkwangseok resveratrolattenuatesconstitutivestat3andstat5activationthroughinductionofptpeandshp2tyrosinephosphatasesandpotentiatessorafenibinducedapoptosisinrenalcellcarcinoma