Cargando…

High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications

BACKGROUND: As a result of the increased consumption of sugar-rich and fatty-products, and the increase in preference for such products, metabolic disorders are becoming more common at a younger age. Fructose is particularly used in prepared foods and carbonated beverages. We investigated the impact...

Descripción completa

Detalles Bibliográficos
Autores principales: Lozano, Iona, Van der Werf, Remmelt, Bietiger, William, Seyfritz, Elodie, Peronet, Claude, Pinget, Michel, Jeandidier, Nathalie, Maillard, Elisa, Marchioni, Eric, Sigrist, Séverine, Dal, Stéphanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766713/
https://www.ncbi.nlm.nih.gov/pubmed/26918024
http://dx.doi.org/10.1186/s12986-016-0074-1
Descripción
Sumario:BACKGROUND: As a result of the increased consumption of sugar-rich and fatty-products, and the increase in preference for such products, metabolic disorders are becoming more common at a younger age. Fructose is particularly used in prepared foods and carbonated beverages. We investigated the impact of regular consumption of fructose, in combination or not with fatty food, on the onset of metabolic syndrome and type 2 diabetes (T2D). We evaluated the metabolic, oxidative, and functional effects on the liver and blood vessels, both related to diabetes complications. METHODS: High-fat diet (HFD), high-fructose beverages (HF) or both (HFHF) were compared to rats fed with normal diet (ND) for 8 months to induce T2D and its metabolic, oxidative, and functional complications. Metabolic control was determined by measuring body weight, fasting blood glucose, C-peptide, HOMA2-IR, leptin, and cholesterol; oxidative parameters were studied by lipid peroxidation and total antioxidant capacity in plasma and the use of ROS labelling on tissue. Histological analysis was performed on the liver and endothelial function was performed in main mesenteric artery using organ-baths. RESULTS: After 2 months, HFHF and HFD increased body weight, leptin, HOMA2-IR associated to steatosis, oxidative stress in plasma and tissues, whereas HF had only a transient increase of leptin and c-peptide. Only HFHF induced fasting hyperglycaemia after 6 months and persistent hyperinsulinaemia and fasting hyperglycaemia with complicated steatosis (inflammation and fibrosis) after 8 months. HFHF and HFD induced endothelial dysfunction at 8 months of diet. CONCLUSIONS: Six months, high fat and high carbohydrate induced T2D with widespread tissues effects. We demonstrated the role of oxidative stress in pathogenesis as well as in complications (hepatic and vascular), reinforcing interest in the use of antioxidants in the prevention and treatment of metabolic diseases, including T2D.