Cargando…

Rab6a is a novel regulator of meiotic apparatus and maturational progression in mouse oocytes

Rab family GTPases have been well known to regulate intracellular vesicle transport, however their function in mammalian oocytes has not been addressed. In this study, we report that when Rab6a is specifically knockdown, mouse oocytes are unable to progress normally through meiosis, arresting at met...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Xiaojing, Zhang, Jiaqi, Li, Ling, Ma, Rujun, Ge, Juan, Han, Longsen, Wang, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768169/
https://www.ncbi.nlm.nih.gov/pubmed/26915694
http://dx.doi.org/10.1038/srep22209
Descripción
Sumario:Rab family GTPases have been well known to regulate intracellular vesicle transport, however their function in mammalian oocytes has not been addressed. In this study, we report that when Rab6a is specifically knockdown, mouse oocytes are unable to progress normally through meiosis, arresting at metaphase I. Moreover, in these oocytes, the defects of chromosome alignment and spindle organization are readily observed during maturation, and resultantly increasing the aneuploidy incidence. We further reveal that kinetochore-microtubule attachments are severely compromised in Rab6a-depleted oocytes, which may in part mediate the meiotic phenotypes described above. In addition, when Rab6a function is altered, BubR1 levels on the kinetochores are markedly increased in metaphase oocytes, indicating the activation of spindle assembly checkpoint. In sum, we identify Rab6a as an important player in modulating oocyte meiosis, specifically the chromosome/spindle organization and metaphase-anaphase transition.