Cargando…
Affinity Enhancement by Ligand Clustering Effect Inspired by Peptide Dendrimers−Shank PDZ Proteins Interactions
High-affinity binders are desirable tools to probe the function that specific protein−protein interactions play in cell. In the process of seeking a general strategy to design high-affinity binders, we found a clue from the βPIX (p21-activated kinase interacting exchange factor)−Shank PDZ interactio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769301/ https://www.ncbi.nlm.nih.gov/pubmed/26918521 http://dx.doi.org/10.1371/journal.pone.0149580 |
Sumario: | High-affinity binders are desirable tools to probe the function that specific protein−protein interactions play in cell. In the process of seeking a general strategy to design high-affinity binders, we found a clue from the βPIX (p21-activated kinase interacting exchange factor)−Shank PDZ interaction in synaptic assembly: three PDZ-binding sites are clustered by a parallel coiled-coil trimer but bind to Shank PDZ protein with 1:1 stoichiometry (1 trimer/1 PDZ). Inspired by this architecture, we proposed that peptide dendrimer, mimicking the ligand clustering in βPIX, will also show enhanced binding affinity, yet with 1:1 stoichiometry. This postulation has been proven here, as we synthesized a set of monomeric, dimeric and trimeric peptides and measured their binding affinity and stoichiometry with Shank PDZ domains by isothermal titration calorimetry, native mass spectrometry and surface plasmon resonance. This affinity enhancement, best explained by proximity effect, will be useful to guide the design of high-affinity blockers for protein−protein interactions. |
---|