Cargando…

Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war

Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66′ homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequ...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Xunhai, Pedersen, Lars C., Gabel, Scott A., Mueller, Geoffrey A., DeRose, Eugene F., London, Robert E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770237/
https://www.ncbi.nlm.nih.gov/pubmed/26773054
http://dx.doi.org/10.1093/nar/gkv1538
Descripción
Sumario:Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66′ homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66′ subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of the isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH′ domain unfolding behavior of the p66/p66′ homodimer. This study demonstrates the feasibility of directly targeting RT maturation with therapeutics.