Cargando…

Short chain acyl-CoA dehydrogenase deficiency and short-term high-fat diet perturb mitochondrial energy metabolism and transcriptional control of lipid-handling in liver

BACKGROUND: The liver is an important site of fat oxidation, which participates in the metabolic regulation of food intake. We showed previously that mice with genetically inactivated Acads, encoding short-chain acyl-CoA dehydrogenase (SCAD), shift food consumption away from fat and toward carbohydr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Sujoy, Kruger, Claudia, Wicks, Shawna, Simon, Jacob, Kumar, K. Ganesh, Johnson, William D., Mynatt, Randall L., Noland, Robert C., Richards, Brenda K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772307/
https://www.ncbi.nlm.nih.gov/pubmed/26933443
http://dx.doi.org/10.1186/s12986-016-0075-0
Descripción
Sumario:BACKGROUND: The liver is an important site of fat oxidation, which participates in the metabolic regulation of food intake. We showed previously that mice with genetically inactivated Acads, encoding short-chain acyl-CoA dehydrogenase (SCAD), shift food consumption away from fat and toward carbohydrate when tested in a macronutrient choice paradigm. This phenotypic eating behavior suggests a link between fat oxidation and nutrient choice which may involve an energy sensing mechanism. To identify hepatic processes that could trigger energy-related signals, we have now performed transcriptional, metabolite and physiological analyses in Acads-/- mice following short-term (2 days) exposure to either high- or low-fat diet. METHODS AND RESULTS: Metabolite analysis revealed 25 acylcarnitine species that were altered by diet and/or genotype. Compared to wild-type mice, phosphorylated AMP-activated protein kinase was 40 % higher in Acads-/- mice after short-term high-fat diet, indicating a low ATP/AMP ratio. Metabolite analyses in isolated liver mitochondria from Acads-/- mice during ADP-linked respiration on butyrate demonstrated a reduced oxygen consumption rate (OCR) compared to wild-type, an effect that was not observed with succinate or palmitoylcarnitine substrates. Liver transcriptomic responses in Acads-/- mice fed high- vs. lowfat diet revealed increased RXR/PPARA signaling, up-regulation of lipid handling pathways (including beta and omega oxidation), and increased mRNA expression of Nfe2l2 target genes. CONCLUSIONS: Together, these results point to an oxidative shortage in this genetic model and support the hypothesis of a lower hepatic energy state associated with SCAD deficiency and high-fat diet. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12986-016-0075-0) contains supplementary material, which is available to authorized users.