Cargando…
Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip
Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical coll...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773137/ https://www.ncbi.nlm.nih.gov/pubmed/26930059 http://dx.doi.org/10.1371/journal.pone.0150360 |
_version_ | 1782418681136939008 |
---|---|
author | Herland, Anna van der Meer, Andries D. FitzGerald, Edward A. Park, Tae-Eun Sleeboom, Jelle J. F. Ingber, Donald E. |
author_facet | Herland, Anna van der Meer, Andries D. FitzGerald, Edward A. Park, Tae-Eun Sleeboom, Jelle J. F. Ingber, Donald E. |
author_sort | Herland, Anna |
collection | PubMed |
description | Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel’s inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types. |
format | Online Article Text |
id | pubmed-4773137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47731372016-03-07 Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip Herland, Anna van der Meer, Andries D. FitzGerald, Edward A. Park, Tae-Eun Sleeboom, Jelle J. F. Ingber, Donald E. PLoS One Research Article Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel’s inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types. Public Library of Science 2016-03-01 /pmc/articles/PMC4773137/ /pubmed/26930059 http://dx.doi.org/10.1371/journal.pone.0150360 Text en © 2016 Herland et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Herland, Anna van der Meer, Andries D. FitzGerald, Edward A. Park, Tae-Eun Sleeboom, Jelle J. F. Ingber, Donald E. Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip |
title | Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip |
title_full | Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip |
title_fullStr | Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip |
title_full_unstemmed | Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip |
title_short | Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip |
title_sort | distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3d human blood-brain barrier on a chip |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773137/ https://www.ncbi.nlm.nih.gov/pubmed/26930059 http://dx.doi.org/10.1371/journal.pone.0150360 |
work_keys_str_mv | AT herlandanna distinctcontributionsofastrocytesandpericytestoneuroinflammationidentifiedina3dhumanbloodbrainbarrieronachip AT vandermeerandriesd distinctcontributionsofastrocytesandpericytestoneuroinflammationidentifiedina3dhumanbloodbrainbarrieronachip AT fitzgeraldedwarda distinctcontributionsofastrocytesandpericytestoneuroinflammationidentifiedina3dhumanbloodbrainbarrieronachip AT parktaeeun distinctcontributionsofastrocytesandpericytestoneuroinflammationidentifiedina3dhumanbloodbrainbarrieronachip AT sleeboomjellejf distinctcontributionsofastrocytesandpericytestoneuroinflammationidentifiedina3dhumanbloodbrainbarrieronachip AT ingberdonalde distinctcontributionsofastrocytesandpericytestoneuroinflammationidentifiedina3dhumanbloodbrainbarrieronachip |