Cargando…
IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells
BACKGROUND: IL-27 is a multifunctional cytokine that has both pro-inflammatory and anti-inflammatory functions. Although IL-27 has been shown to potently inhibit lung fibrosis, the detailed mechanism of IL-27 in this process is poorly understood. Epithelial–mesenchymal transition (EMT) is one of the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774182/ https://www.ncbi.nlm.nih.gov/pubmed/26932661 http://dx.doi.org/10.1186/s12860-016-0084-x |
_version_ | 1782418874593968128 |
---|---|
author | Dong, Zhaoxing Tai, Wenlin Lei, Wen Wang, Yin Li, ZhenKun Zhang, Tao |
author_facet | Dong, Zhaoxing Tai, Wenlin Lei, Wen Wang, Yin Li, ZhenKun Zhang, Tao |
author_sort | Dong, Zhaoxing |
collection | PubMed |
description | BACKGROUND: IL-27 is a multifunctional cytokine that has both pro-inflammatory and anti-inflammatory functions. Although IL-27 has been shown to potently inhibit lung fibrosis, the detailed mechanism of IL-27 in this process is poorly understood. Epithelial–mesenchymal transition (EMT) is one of the key mechanisms involved in pulmonary fibrosis. We assessed the effects of IL-27 on TGF-β1-induced EMT in alveolar epithelial cells. METHODS: A549 cells (a human AEC cell line) were incubated with TGF-β1, IL-27, or both TGF-β1 and IL-27, and changes in E-cadherin, β-catenin, vimentin and a-SMA levels were measured using real-time PCR, western blotting and fluorescence microscopy. The related proteins in the JAK/STAT and TGF-β/Smad signalling pathways were examined by western blot. RESULTS: IL-27 increased the expression of epithelial phenotypic markers, including E-cadherin and β-catenin, and inhibited mesenchymal phenotypic markers, including vimentin and a-SMA in A549 cells. Moreover, TGF-β1-induced EMT was attenuated by IL-27. Furthermore, we found that TGF-β1 activated the phosphorylation of JAK1, STAT1, STAT3, STAT5, Smad1, Smad3 and Smad5, and IL-27 partially inhibited these changes in this process. When cells were treated with the STAT3 specific inhibitor wp1006 and the Smad3 specific inhibitor SIS3, the inhibition of EMT by IL-27 was significantly strengthened. CONCLUSION: Our results suggest that IL-27 attenuates epithelial–mesenchymal transition in alveolar epithelial cells in the absence or presence of TGF-β1 through the JAK/STAT and TGF-β/Smad signalling pathways. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-016-0084-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4774182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47741822016-03-03 IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells Dong, Zhaoxing Tai, Wenlin Lei, Wen Wang, Yin Li, ZhenKun Zhang, Tao BMC Cell Biol Research Article BACKGROUND: IL-27 is a multifunctional cytokine that has both pro-inflammatory and anti-inflammatory functions. Although IL-27 has been shown to potently inhibit lung fibrosis, the detailed mechanism of IL-27 in this process is poorly understood. Epithelial–mesenchymal transition (EMT) is one of the key mechanisms involved in pulmonary fibrosis. We assessed the effects of IL-27 on TGF-β1-induced EMT in alveolar epithelial cells. METHODS: A549 cells (a human AEC cell line) were incubated with TGF-β1, IL-27, or both TGF-β1 and IL-27, and changes in E-cadherin, β-catenin, vimentin and a-SMA levels were measured using real-time PCR, western blotting and fluorescence microscopy. The related proteins in the JAK/STAT and TGF-β/Smad signalling pathways were examined by western blot. RESULTS: IL-27 increased the expression of epithelial phenotypic markers, including E-cadherin and β-catenin, and inhibited mesenchymal phenotypic markers, including vimentin and a-SMA in A549 cells. Moreover, TGF-β1-induced EMT was attenuated by IL-27. Furthermore, we found that TGF-β1 activated the phosphorylation of JAK1, STAT1, STAT3, STAT5, Smad1, Smad3 and Smad5, and IL-27 partially inhibited these changes in this process. When cells were treated with the STAT3 specific inhibitor wp1006 and the Smad3 specific inhibitor SIS3, the inhibition of EMT by IL-27 was significantly strengthened. CONCLUSION: Our results suggest that IL-27 attenuates epithelial–mesenchymal transition in alveolar epithelial cells in the absence or presence of TGF-β1 through the JAK/STAT and TGF-β/Smad signalling pathways. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-016-0084-x) contains supplementary material, which is available to authorized users. BioMed Central 2016-03-01 /pmc/articles/PMC4774182/ /pubmed/26932661 http://dx.doi.org/10.1186/s12860-016-0084-x Text en © Dong et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Dong, Zhaoxing Tai, Wenlin Lei, Wen Wang, Yin Li, ZhenKun Zhang, Tao IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells |
title | IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells |
title_full | IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells |
title_fullStr | IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells |
title_full_unstemmed | IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells |
title_short | IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells |
title_sort | il-27 inhibits the tgf-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774182/ https://www.ncbi.nlm.nih.gov/pubmed/26932661 http://dx.doi.org/10.1186/s12860-016-0084-x |
work_keys_str_mv | AT dongzhaoxing il27inhibitsthetgfb1inducedepithelialmesenchymaltransitioninalveolarepithelialcells AT taiwenlin il27inhibitsthetgfb1inducedepithelialmesenchymaltransitioninalveolarepithelialcells AT leiwen il27inhibitsthetgfb1inducedepithelialmesenchymaltransitioninalveolarepithelialcells AT wangyin il27inhibitsthetgfb1inducedepithelialmesenchymaltransitioninalveolarepithelialcells AT lizhenkun il27inhibitsthetgfb1inducedepithelialmesenchymaltransitioninalveolarepithelialcells AT zhangtao il27inhibitsthetgfb1inducedepithelialmesenchymaltransitioninalveolarepithelialcells |