Cargando…

Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers

Virus discovery from high throughput sequencing data often follows a bottom-up approach where taxonomic annotation takes place prior to association to disease. Albeit effective in some cases, the approach fails to detect novel pathogens and remote variants not present in reference databases. We have...

Descripción completa

Detalles Bibliográficos
Autores principales: Friis-Nielsen, Jens, Kjartansdóttir, Kristín Rós, Mollerup, Sarah, Asplund, Maria, Mourier, Tobias, Jensen, Randi Holm, Hansen, Thomas Arn, Rey-Iglesia, Alba, Richter, Stine Raith, Nielsen, Ida Broman, Alquezar-Planas, David E., Olsen, Pernille V. S., Vinner, Lasse, Fridholm, Helena, Nielsen, Lars Peter, Willerslev, Eske, Sicheritz-Pontén, Thomas, Lund, Ole, Hansen, Anders Johannes, Izarzugaza, Jose M. G., Brunak, Søren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776208/
https://www.ncbi.nlm.nih.gov/pubmed/26907326
http://dx.doi.org/10.3390/v8020053
_version_ 1782419114214555648
author Friis-Nielsen, Jens
Kjartansdóttir, Kristín Rós
Mollerup, Sarah
Asplund, Maria
Mourier, Tobias
Jensen, Randi Holm
Hansen, Thomas Arn
Rey-Iglesia, Alba
Richter, Stine Raith
Nielsen, Ida Broman
Alquezar-Planas, David E.
Olsen, Pernille V. S.
Vinner, Lasse
Fridholm, Helena
Nielsen, Lars Peter
Willerslev, Eske
Sicheritz-Pontén, Thomas
Lund, Ole
Hansen, Anders Johannes
Izarzugaza, Jose M. G.
Brunak, Søren
author_facet Friis-Nielsen, Jens
Kjartansdóttir, Kristín Rós
Mollerup, Sarah
Asplund, Maria
Mourier, Tobias
Jensen, Randi Holm
Hansen, Thomas Arn
Rey-Iglesia, Alba
Richter, Stine Raith
Nielsen, Ida Broman
Alquezar-Planas, David E.
Olsen, Pernille V. S.
Vinner, Lasse
Fridholm, Helena
Nielsen, Lars Peter
Willerslev, Eske
Sicheritz-Pontén, Thomas
Lund, Ole
Hansen, Anders Johannes
Izarzugaza, Jose M. G.
Brunak, Søren
author_sort Friis-Nielsen, Jens
collection PubMed
description Virus discovery from high throughput sequencing data often follows a bottom-up approach where taxonomic annotation takes place prior to association to disease. Albeit effective in some cases, the approach fails to detect novel pathogens and remote variants not present in reference databases. We have developed a species independent pipeline that utilises sequence clustering for the identification of nucleotide sequences that co-occur across multiple sequencing data instances. We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and tissue types, 32 non-template controls, and 24 test samples. Recurrent sequences were statistically associated to biological, methodological or technical features with the aim to identify novel pathogens or plausible contaminants that may associate to a particular kit or method. We provide examples of identified inhabitants of the healthy tissue flora as well as experimental contaminants. Unmapped sequences that co-occur with high statistical significance potentially represent the unknown sequence space where novel pathogens can be identified.
format Online
Article
Text
id pubmed-4776208
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-47762082016-03-09 Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers Friis-Nielsen, Jens Kjartansdóttir, Kristín Rós Mollerup, Sarah Asplund, Maria Mourier, Tobias Jensen, Randi Holm Hansen, Thomas Arn Rey-Iglesia, Alba Richter, Stine Raith Nielsen, Ida Broman Alquezar-Planas, David E. Olsen, Pernille V. S. Vinner, Lasse Fridholm, Helena Nielsen, Lars Peter Willerslev, Eske Sicheritz-Pontén, Thomas Lund, Ole Hansen, Anders Johannes Izarzugaza, Jose M. G. Brunak, Søren Viruses Article Virus discovery from high throughput sequencing data often follows a bottom-up approach where taxonomic annotation takes place prior to association to disease. Albeit effective in some cases, the approach fails to detect novel pathogens and remote variants not present in reference databases. We have developed a species independent pipeline that utilises sequence clustering for the identification of nucleotide sequences that co-occur across multiple sequencing data instances. We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and tissue types, 32 non-template controls, and 24 test samples. Recurrent sequences were statistically associated to biological, methodological or technical features with the aim to identify novel pathogens or plausible contaminants that may associate to a particular kit or method. We provide examples of identified inhabitants of the healthy tissue flora as well as experimental contaminants. Unmapped sequences that co-occur with high statistical significance potentially represent the unknown sequence space where novel pathogens can be identified. MDPI 2016-02-19 /pmc/articles/PMC4776208/ /pubmed/26907326 http://dx.doi.org/10.3390/v8020053 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Friis-Nielsen, Jens
Kjartansdóttir, Kristín Rós
Mollerup, Sarah
Asplund, Maria
Mourier, Tobias
Jensen, Randi Holm
Hansen, Thomas Arn
Rey-Iglesia, Alba
Richter, Stine Raith
Nielsen, Ida Broman
Alquezar-Planas, David E.
Olsen, Pernille V. S.
Vinner, Lasse
Fridholm, Helena
Nielsen, Lars Peter
Willerslev, Eske
Sicheritz-Pontén, Thomas
Lund, Ole
Hansen, Anders Johannes
Izarzugaza, Jose M. G.
Brunak, Søren
Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers
title Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers
title_full Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers
title_fullStr Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers
title_full_unstemmed Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers
title_short Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers
title_sort identification of known and novel recurrent viral sequences in data from multiple patients and multiple cancers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776208/
https://www.ncbi.nlm.nih.gov/pubmed/26907326
http://dx.doi.org/10.3390/v8020053
work_keys_str_mv AT friisnielsenjens identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT kjartansdottirkristinros identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT mollerupsarah identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT asplundmaria identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT mouriertobias identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT jensenrandiholm identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT hansenthomasarn identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT reyiglesiaalba identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT richterstineraith identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT nielsenidabroman identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT alquezarplanasdavide identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT olsenpernillevs identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT vinnerlasse identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT fridholmhelena identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT nielsenlarspeter identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT willersleveske identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT sicheritzpontenthomas identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT lundole identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT hansenandersjohannes identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT izarzugazajosemg identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers
AT brunaksøren identificationofknownandnovelrecurrentviralsequencesindatafrommultiplepatientsandmultiplecancers