Cargando…

Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts

Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a...

Descripción completa

Detalles Bibliográficos
Autores principales: Khazaie, Niusha, Massumi, Mohammad, Wee, Ping, Salimi, Mahdieh, Mohammadnia, Abdulshakour, Yaqubi, Moein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777544/
https://www.ncbi.nlm.nih.gov/pubmed/26938987
http://dx.doi.org/10.1371/journal.pone.0150518
Descripción
Sumario:Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs.