Cargando…

MIF inhibition reverts the gene expression profile of human melanoma cell line-induced MDSCs to normal monocytes

Myeloid-derived suppressor cells (MDSCs) are potently immunosuppressive innate immune cells that accumulate in advanced cancer patients and actively inhibit anti-tumor T lymphocyte responses [1]. Increased numbers of circulating MDSCs directly correlate with melanoma patient morbidity and reduced an...

Descripción completa

Detalles Bibliográficos
Autores principales: Waigel, Sabine, Rendon, Beatriz E., Lamont, Gwyneth, Richie, Jamaal, Mitchell, Robert A., Yaddanapudi, Kavitha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778657/
https://www.ncbi.nlm.nih.gov/pubmed/26981417
http://dx.doi.org/10.1016/j.gdata.2015.12.025
Descripción
Sumario:Myeloid-derived suppressor cells (MDSCs) are potently immunosuppressive innate immune cells that accumulate in advanced cancer patients and actively inhibit anti-tumor T lymphocyte responses [1]. Increased numbers of circulating MDSCs directly correlate with melanoma patient morbidity and reduced anti-tumor immune responses [2], [3]. Previous studies have revealed that monocyte-derived macrophage migration inhibitory factor (MIF) is necessary for the immune suppressive function of MDSCs in mouse models of melanoma [4], [5]. To investigate whether MIF participates in human melanoma-induced MDSC differentiation and/or suppressive function, we have established an in vitro MDSC induction model using primary, normal human monocytes co-cultured with human melanoma cell lines in the presence or absence of the MIF antagonist—4-IPP [4], [6], [7], [8], [9]. To identify potential mechanistic effectors, we have performed transcriptome analyses on cultured monocytes and on melanoma-induced MDSCs obtained from either untreated or 4-IPP-treated A375:monocyte co-cultures. Here, we present a detailed protocol, which can facilitate easy reproduction of the microarray results (NCBI GEO accession number GSE73333) published by Yaddanapudi et al. (2015) in Cancer Immunology Research [10].