Cargando…
Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses
BACKGROUND: Burkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790896/ https://www.ncbi.nlm.nih.gov/pubmed/26974441 http://dx.doi.org/10.1371/journal.pntd.0004503 |
_version_ | 1782421018684424192 |
---|---|
author | See, Jia-Xiang Samudi, Chandramathi Saeidi, Alireza Menon, Nivedita Choh, Leang-Chung Vadivelu, Jamuna Shankar, Esaki M. |
author_facet | See, Jia-Xiang Samudi, Chandramathi Saeidi, Alireza Menon, Nivedita Choh, Leang-Chung Vadivelu, Jamuna Shankar, Esaki M. |
author_sort | See, Jia-Xiang |
collection | PubMed |
description | BACKGROUND: Burkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of time, and cause persistent disease leading to treatment difficulties. Understanding the immunological mechanisms behind persistent infection can result in improved treatment strategies in clinical melioidosis. METHODS: Ten-day LD(50) was determined for the small-colony variant (SCV) and its parental wild-type (WT) via intranasal route in experimental BALB/c mice. Persistent B. pseudomallei infection was generated by administrating sub-lethal dose of the two strains based on previously determined LD(50). After two months, peripheral blood mononuclear cells (PBMCs) and plasma were obtained to investigate host immune responses against persistent B. pseudomallei infection. Lungs, livers, and spleens were harvested and bacterial loads in these organs were determined. RESULTS: Based on the ten-day LD(50), the SCV was ~20-fold less virulent than the WT. The SCV caused higher bacterial loads in spleens compared to its WT counterparts with persistent B. pseudomallei infection. We found that the CD4+ T-cell frequencies were decreased, and the expressions of PD-1, but not CTLA-4 were significantly increased on the CD4+ and CD8+ T cells of these mice. Notably, persistent infection with the SCV led to significantly higher levels of PD-1 than the WT B. pseudomallei. Plasma IFN-γ, IL-6, and IL-17A levels were elevated only in SCV-infected mice. In addition, skewed plasma Th1 and Th17 responses were observed in SCV-infected mice relative to WT-infected and uninfected mice. CONCLUSION: B. pseudomallei appears to upregulate the expression of PD-1 on T cells to evade host immune responses, which likely facilitates bacterial persistence in the host. SCVs cause distinct pathology and immune responses in the host as compared to WT B. pseudomallei. |
format | Online Article Text |
id | pubmed-4790896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47908962016-03-23 Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses See, Jia-Xiang Samudi, Chandramathi Saeidi, Alireza Menon, Nivedita Choh, Leang-Chung Vadivelu, Jamuna Shankar, Esaki M. PLoS Negl Trop Dis Research Article BACKGROUND: Burkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of time, and cause persistent disease leading to treatment difficulties. Understanding the immunological mechanisms behind persistent infection can result in improved treatment strategies in clinical melioidosis. METHODS: Ten-day LD(50) was determined for the small-colony variant (SCV) and its parental wild-type (WT) via intranasal route in experimental BALB/c mice. Persistent B. pseudomallei infection was generated by administrating sub-lethal dose of the two strains based on previously determined LD(50). After two months, peripheral blood mononuclear cells (PBMCs) and plasma were obtained to investigate host immune responses against persistent B. pseudomallei infection. Lungs, livers, and spleens were harvested and bacterial loads in these organs were determined. RESULTS: Based on the ten-day LD(50), the SCV was ~20-fold less virulent than the WT. The SCV caused higher bacterial loads in spleens compared to its WT counterparts with persistent B. pseudomallei infection. We found that the CD4+ T-cell frequencies were decreased, and the expressions of PD-1, but not CTLA-4 were significantly increased on the CD4+ and CD8+ T cells of these mice. Notably, persistent infection with the SCV led to significantly higher levels of PD-1 than the WT B. pseudomallei. Plasma IFN-γ, IL-6, and IL-17A levels were elevated only in SCV-infected mice. In addition, skewed plasma Th1 and Th17 responses were observed in SCV-infected mice relative to WT-infected and uninfected mice. CONCLUSION: B. pseudomallei appears to upregulate the expression of PD-1 on T cells to evade host immune responses, which likely facilitates bacterial persistence in the host. SCVs cause distinct pathology and immune responses in the host as compared to WT B. pseudomallei. Public Library of Science 2016-03-14 /pmc/articles/PMC4790896/ /pubmed/26974441 http://dx.doi.org/10.1371/journal.pntd.0004503 Text en © 2016 See et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article See, Jia-Xiang Samudi, Chandramathi Saeidi, Alireza Menon, Nivedita Choh, Leang-Chung Vadivelu, Jamuna Shankar, Esaki M. Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses |
title | Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses |
title_full | Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses |
title_fullStr | Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses |
title_full_unstemmed | Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses |
title_short | Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses |
title_sort | experimental persistent infection of balb/c mice with small-colony variants of burkholderia pseudomallei leads to concurrent upregulation of pd-1 on t cells and skewed th1 and th17 responses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790896/ https://www.ncbi.nlm.nih.gov/pubmed/26974441 http://dx.doi.org/10.1371/journal.pntd.0004503 |
work_keys_str_mv | AT seejiaxiang experimentalpersistentinfectionofbalbcmicewithsmallcolonyvariantsofburkholderiapseudomalleileadstoconcurrentupregulationofpd1ontcellsandskewedth1andth17responses AT samudichandramathi experimentalpersistentinfectionofbalbcmicewithsmallcolonyvariantsofburkholderiapseudomalleileadstoconcurrentupregulationofpd1ontcellsandskewedth1andth17responses AT saeidialireza experimentalpersistentinfectionofbalbcmicewithsmallcolonyvariantsofburkholderiapseudomalleileadstoconcurrentupregulationofpd1ontcellsandskewedth1andth17responses AT menonnivedita experimentalpersistentinfectionofbalbcmicewithsmallcolonyvariantsofburkholderiapseudomalleileadstoconcurrentupregulationofpd1ontcellsandskewedth1andth17responses AT chohleangchung experimentalpersistentinfectionofbalbcmicewithsmallcolonyvariantsofburkholderiapseudomalleileadstoconcurrentupregulationofpd1ontcellsandskewedth1andth17responses AT vadivelujamuna experimentalpersistentinfectionofbalbcmicewithsmallcolonyvariantsofburkholderiapseudomalleileadstoconcurrentupregulationofpd1ontcellsandskewedth1andth17responses AT shankaresakim experimentalpersistentinfectionofbalbcmicewithsmallcolonyvariantsofburkholderiapseudomalleileadstoconcurrentupregulationofpd1ontcellsandskewedth1andth17responses |