Cargando…

Simultaneous determination of 8-oxo-2’-deoxyguanosine and 8-oxo-2’-deoxyadenosine in human retinal DNA by liquid chromatography nanoelectrospray-tandem mass spectrometry

Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in the developed world. Oxidative damage to mitochondrial DNA (mtDNA) in the retinal pigment epithelium (RPE) may play a key role in AMD. Measurement of oxidative DNA lesions such as 8-oxo-2’-deoxyguanosine (...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Bin, Jing, Meng, Villalta, Peter W., Kapphahn, Rebecca J., Montezuma, Sandra R., Ferrington, Deborah A., Stepanov, Irina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793187/
https://www.ncbi.nlm.nih.gov/pubmed/26979577
http://dx.doi.org/10.1038/srep22375
Descripción
Sumario:Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in the developed world. Oxidative damage to mitochondrial DNA (mtDNA) in the retinal pigment epithelium (RPE) may play a key role in AMD. Measurement of oxidative DNA lesions such as 8-oxo-2’-deoxyguanosine (8-oxo-dG) and 8-oxo-2’-deoxyadenosine (8-oxo-dA) in diseased RPE could provide important insights into the mechanism of AMD development. We have developed a liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry method for simultaneous analysis of 8-oxo-dG and 8-oxo-dA in human retinal DNA. The developed method was applied to the analysis of retinal DNA from 5 donors with AMD and 5 control donors without AMD. In mtDNA, the levels of 8-oxo-dG in controls and AMD donors averaged 170 and 188, and 8-oxo-dA averaged 11 and 17 adducts per 10(6) bases, respectively. In nuclear DNA, the levels of 8-oxo-dG in controls and AMD donors averaged 0.54 and 0.96, and 8-oxo-dA averaged 0.04 and 0.05 adducts per 10(6) bases, respectively. This highly sensitive method allows for the measurement of both adducts in very small amounts of DNA and can be used in future studies investigating the pathophysiological role of 8-oxo-dG and 8-oxo-dA in AMD and other oxidative damage-related diseases in humans.