Cargando…
No Promoter Left Behind (NPLB): learn de novo promoter architectures from genome-wide transcription start sites
Summary: Promoters have diverse regulatory architectures and thus activate genes differently. For example, some have a TATA-box, many others do not. Even the ones with it can differ in its position relative to the transcription start site (TSS). No Promoter Left Behind (NPLB) is an efficient, organi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795619/ https://www.ncbi.nlm.nih.gov/pubmed/26530723 http://dx.doi.org/10.1093/bioinformatics/btv645 |
Sumario: | Summary: Promoters have diverse regulatory architectures and thus activate genes differently. For example, some have a TATA-box, many others do not. Even the ones with it can differ in its position relative to the transcription start site (TSS). No Promoter Left Behind (NPLB) is an efficient, organism-independent method for characterizing such diverse architectures directly from experimentally identified genome-wide TSSs, without relying on known promoter elements. As a test case, we show its application in identifying novel architectures in the fly genome. Availability and implementation: Web-server at http://nplb.ncl.res.in. Standalone also at https://github.com/computationalBiology/NPLB/ (Mac OSX/Linux). Contact: l.narlikar@ncl.res.in Supplementary information: Supplementary data are available at Bioinformatics online. |
---|