Cargando…
Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation
Faithful chromosome segregation in mammalian cells requires the bi-orientation of sister chromatids which relies on sensing correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying cyclin-dependent kinase 1 (CDK1) activation that triggers mitotic entry is...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798883/ https://www.ncbi.nlm.nih.gov/pubmed/26829474 http://dx.doi.org/10.1038/nchembio.2017 |
Sumario: | Faithful chromosome segregation in mammalian cells requires the bi-orientation of sister chromatids which relies on sensing correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying cyclin-dependent kinase 1 (CDK1) activation that triggers mitotic entry is extensively studied, the regulatory mechanisms that couple CDK1-cyclin B activity to chromosome stability are not well understood. Here, we identified a signaling axis in which Aurora B activity is modulated by CDK1-cyclin B via acetyltransferase TIP60 (Tat-interactive protein 60 kDa) in human cell division. CDK1-cyclin B phosphorylated Ser90 of TIP60, which elicited TIP60-dependent acetylation of Aurora B and promoted accurate chromosome segregation in mitosis. Mechanistically, TIP60 acetylation of Aurora B at Lys215 protected the phosphorylation of its activation loop from PP2A reactivation-elicited dephosphorylation to ensure a robust, error-free metaphase-anaphase transition. These findings delineated a conserved signaling cascade that integrates protein phosphorylation and acetylation to cell cycle progression for maintenance of genomic stability. |
---|