Cargando…

Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by r...

Descripción completa

Detalles Bibliográficos
Autores principales: Coutu, Ronald A., Medvedev, Ivan R., Petkie, Douglas T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801627/
https://www.ncbi.nlm.nih.gov/pubmed/26907280
http://dx.doi.org/10.3390/s16020251
Descripción
Sumario:In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom built, low-volume, vacuum chamber. The resulting cantilever sensors exhibited improved signal to noise ratios, sensitivities and normalized noise equivalent absorption (NNEA) coefficients of approximately 4.28 × 10(−10) cm(−1)·WHz(−1/2). This reported NNEA represents approximately a 70% improvement over previously fabricated and tested SOI cantilever sensors for THz PA spectroscopy.