Cargando…

KMAD: knowledge-based multiple sequence alignment for intrinsically disordered proteins

Summary: Intrinsically disordered proteins (IDPs) lack tertiary structure and thus differ from globular proteins in terms of their sequence–structure–function relations. IDPs have lower sequence conservation, different types of active sites and a different distribution of functionally important regi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lange, Joanna, Wyrwicz, Lucjan S., Vriend, Gert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803389/
https://www.ncbi.nlm.nih.gov/pubmed/26568635
http://dx.doi.org/10.1093/bioinformatics/btv663
Descripción
Sumario:Summary: Intrinsically disordered proteins (IDPs) lack tertiary structure and thus differ from globular proteins in terms of their sequence–structure–function relations. IDPs have lower sequence conservation, different types of active sites and a different distribution of functionally important regions, which altogether make their multiple sequence alignment (MSA) difficult. The KMAD MSA software has been written specifically for the alignment and annotation of IDPs. It augments the substitution matrix with knowledge about post-translational modifications, functional domains and short linear motifs. Results: MSAs produced with KMAD describe well-conserved features among IDPs, tend to agree well with biological intuition, and are a good basis for designing new experiments to shed light on this large, understudied class of proteins. Availability and implementation: KMAD web server is accessible at http://www.cmbi.ru.nl/kmad/. A standalone version is freely available. Contact: vriend@cmbi.ru.nl